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VERSION ABREGEE

Version abrégée

Dans le cadre de cette thèse, nous proposons d’utiliser des méthodologies per-
mettant d’extraire automatiquement des caractéristiques importantes depuis des
images. Nous nous sommes intéressés tout spécialement à l’évaluation de ces car-
actéristiques comparées à des caractéristiques définies à la main. Plus précisé-
ment, nous nous sommes intéressés à l’entraînement non-supervisé de modèles
Restricted Boltzmann Machine (RBM) et Convolutional Restricted Boltzmann
Machine (CRBM). Ces modèles ont relancés l’engouement de cette décade pour
les technologies dîtes de Deep Learning. En effet, ces dernières années les approches
basées sur les auto-encodeurs et tout spécialement les auto-encodeurs convolution-
nels ont été de plus en plus utilisées. Pour ces raisons, un objectif de cette thèse
est de comparer l’approche CRBM avec l’approche auto-encodeur convolutionnel.

Le cadre de ce travail est défini par plusieurs tâches d’intelligence artificielle. La
première, la reconnaissance de nombres écrits à la main, est analysée pour voir com-
ment le pré-entraînement non-supervisé, une technique introduite avec les Deep
Belief Networks (DBNs), d’un modèle peut améliorer l’entraînement de réseaux
de neurones. Le second, la détection et la reconnaissance de Sudoku dans des
images, consiste à évaluer les performances des modèles DBN et Convolutional
Deep Belief Network (CDBN) pour la classification d’images de basse qualité. Fi-
nalement, les caractéristiques sont apprises de façon complètement non-supervisée
pour une tâche de repérage de mot-clé depuis des images et sont comparées avec
des caractéristiques bien connues, définies à la main. De plus, cette thèse est
aussi orientée autour d’un axe de développement logiciel. En effet, une librairie de
réseaux de neurones a été développée durant la thèse pour explorer les différentes
optimisations qui sont possibles pour entraîner les modèles aussi vite que possible.

Cette thèse est séparée en plusieurs chapitres, ainsi:

Chapitre 1 Introduction Ce chapitre présente le contexte de la thèse. Une série
de questions de recherche est proposée pour définir plus en détail le contexte de la
recherche. Il propose aussi une description détaillée du contenu de ce rapport.

Chapitre 2 Fundamentals Dans ce chapitre, les différentes techniques utilisées
pour cette thèse sont détaillées. Cela comprend l’intelligence artificielle en général
et les réseaux de neurones, en passant par les techniques plus spécifiques telles que
le modèle RBM et son entraînement.

Chapitre 3 Semi-Supervised Training Ce chapitre explore les avantages pos-
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sibles du pré-entraînement d’un réseau de neurones en utilisant une technique
non-supervisée. Les résultats montrent que cela permet de fortement régulariser
l’entraînement du réseau. L’état de ces techniques en vue des différentes amélio-
rations modernes relatives à l’entraînement des réseaux est aussi discuté.

Chapitre 4 Framework Une librairie complète pour l’entraînement de réseaux
de neurones a été développée pour cette thèse. Ce chapitre présente toutes les
fonctionnalités inclues dans la librairie ainsi que les nombreuses optimisations qui
ont été réalisées afin de rendre l’entraînement de réseau de neurones aussi rapide
que possible. Les choix d’implémentation relatifs aux différents modèles RBM sont
aussi discutés.

Chapitre 5 Sudoku Recognition L’entraînement semi-supervisé est utilisé pour
entraîner un système de classification pour des nombres aussi bien générés par
ordinateur qu’écrits à la main, depuis des images de Sudoku. Une base de données
de ces images a été collectée avec des caméras de téléphones portables dans des
journaux suisses. Il est montré que le système final est capable de reconnaître la
plupart des nombres, en capturant des caractéristiques importantes des images,
autant pour les nombres cursifs que pour les nombres générés par ordinateur.

Chapitre 6 Keyword Spotting L’apprentissage entièrement non-supervisé est
analysé dans ce chapitre, dans le contexte du repérage de mot-clés dans des doc-
uments historiques et modernes. Un système complet est présenté avec deux sys-
tèmes de classification différents. Les caractéristiques apprises sont comparées
avec plusieurs caractéristiques de référence et les résultats montrent leur supérior-
ité dans presque toutes les conditions testées.

Chapitre 7 Auto-encoders Dans ce chapitre, nous avons comparé les auto-
encodeurs standards, basés sur des réseaux de neurones, avec les modèles RBM
et CRBM. La même tâche de repérage de mot-clé, présentée dans le Chapitre 6,
est utilisée pour l’évaluation des différentes techniques. Il est montré que les deux
familles ont des performances relativement similaires. Nous observons que les auto-
encodeurs standards sont généralement plus simples à entraîner et à configurer.
Cela peut expliquer leur domination dans la communauté de recherche.

Chapitre 8 Conclusion Le chapitre final de cette thèse dresse les conclusions sur
les différentes expériences et tente de répondre aux questions qui ont été définies
dans l’Introduction.
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ABSTRACT

Abstract

In this thesis, we propose to use methodologies that automatically learn how to
extract relevant features from images. We are especially interested in evaluating
how these features compare against handcrafted features. More precisely, we are
interested in the unsupervised training that is used for the Restricted Boltzmann
Machine (RBM) and Convolutional Restricted Boltzmann Machine (CRBM) mod-
els. These models relaunched the Deep Learning interest of the last decade. During
the time of this thesis, the auto-encoders approach, especially Convolutional Auto-
Encoders (CAE) have been used more and more. Therefore, one objective of this
thesis is also to compare the CRBM approach with the CAE approach.

The scope of this work is defined by several machine learning tasks. The first
one, handwritten digit recognition, is analysed to see how much the unsupervised
pretraining technique introduced with the Deep Belief Network (DBN) model im-
proves the training of neural networks. The second, detection and recognition of
Sudoku in images, is evaluating the efficiency of DBN and Convolutional Deep
Belief Network (CDBN) models for classification of images of poor quality. Fi-
nally, features are learned fully unsupervised from images for a keyword spotting
task and are compared against well-known handcrafted features. Moreover, the
thesis was also oriented around a software engineering axis. Indeed, a complete
machine learning framework was developed during this thesis to explore possible
optimizations and possible algorithms in order to train the tested models as fast
as possible.

This thesis is split into several chapters, as follows:

Chapter 1 Introduction This introductory chapter presents the context of the
thesis. Several research questions are also proposed to define further the context
of the research and a detailed outline of the thesis is provided.

Chapter 2 Fundamentals In this chapter, the background of the different tech-
niques used in this research is laid out, from machine learning to the RBM model
and its unsupervised training with the Contrastive Divergence (CD) algorithm.

Chapter 3 Semi-Supervised Training This chapter explores the advantages of
pretraining a neural network using unsupervised techniques in order to produce a
robust initialization of the weights. Our work shows that unsupervised pretraining
acts as a strong regularizer. The state of unsupervised pretraining in view of the
recent improvements in training is also discussed.
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Chapter 4 Framework We developed a machine learning framework for the
purpose of this research. The different features that were implemented as well as
the many performance optimizations that were developed are presented here. The
implementation choices regarding the different RBM models are also discussed.

Chapter 5 Sudoku Recognition Unsupervised pretraining is used to train a
recognizer for mixed inputs including computer-generated and handwritten digits
extracted from Sudoku images. A database of images has been collected using
smartphone cameras in Swiss newspapers. It is shown that the final system is able
to efficiently recognize most of the detected digits, capturing relevant features for
both printed and handwritten digit recognition.

Chapter 6 Keyword Spotting Fully unsupervised learning with convolutional
models is explored in this chapter, in the context of handwritten keyword spotting,
on historical and modern documents. A complete system is designed, with two
different classifiers. The learned features are compared against several reference
handcrafted feature sets and are outperforming them under almost all conditions.

Chapter 7 Auto-encoders In this chapter, we compared regular auto-encoders,
based on Artificial Neural Networks (ANNs) against the RBM and CRBM models.
The same keyword spotting task as in Chapter 6 is used for the evaluation. It is
shown that both families are exhibiting similar performance. We observe that
auto-encoders are generally more simple to train, which may explain their current
predominance of use in the research community.

Chapter 8 Conclusion The final chapter draws the conclusions on the different
experiments and addresses the questions that were stated in the Introduction.
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Symbols and notation

Below we summarize the notation used throughout this thesis. Vectors are denoted
as boldface lowercase letter, such as a. Matrices are denoted as boldface uppercase
letters, such as A. Constants are uppercase letters, such as 𝑁 . Indices inside
ranges are lowercase letter, such as 𝑖. Unless indicated otherwise, vectors and
matrices are considered as being row-major.

Machine Learning

o Raw input of a system, from which features x are extracted

x Input of a system

y Excepted output of a system

𝑦 Obtained output of a system

𝜖 Learning Rate

𝛼 Momentum

𝜆 Weight-cost for weight decay

∇ Gradient

𝜃 Parameters of a model

𝐽(𝜃) Cost function

𝑊 Weights of a neural model

𝑏 Biases of the visible units of a neural model

𝑐 Biases of the hidden units of a neural model

Energy Based Models

𝑝(𝑥) Probability density function

𝑝(𝑥 | 𝑦) Conditional probability of 𝑥 given 𝑦

𝐸(v,h) Energy of a joint configuration

𝐹 (v) Free Energy of a visible pattern
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Eh Expectation over h

𝑍 Partition function

𝑝 Activation probability of a unit

𝑠 Sample state of a unit

v Vector of visible unit probabilities

v′ Vector of visible unit states

h Vector of hidden unit probabilities

h′ Vector of hidden unit states

Mathematical symbols

, defined as

|𝑥| Absolute value

𝜎(𝑥) Logistic sigmoid function

𝑒𝑥𝑝(𝑥) Exponential function 𝑒𝑥

𝑁(𝜇, 𝜎2) Normal distribution of mean 𝜇 and variance 𝜎2

𝑈𝑛𝑖𝑓(𝑎, 𝑏) Uniform distribution between 𝑎 and 𝑏

𝑂(·) Big-O complexity

Linear algreba

A𝑇 Transpose of a matrix

𝑇𝑟(A) Trace of a matrix

a · b Dot product of two vectors

a⊙ b Hadamard product between two vectors

a⊗ b Outer product between two vectors

Ã Matrix A flipped horizontally and vertically

A *B Matrix multiplication of the matrix A and the matrix B

I ∙𝑣 K Valid convolution of the matrix I by the matrix K

I ∙𝑓 K Full convolution of the matrix I by the matrix K

ℱ(A) Fast Fourier Transform of the matrix A

ℱ−1(A) Inverse Fast Fourier Transform of the matrix A
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

If you think it’s simple, then you
have misunderstood the problem

Bjarne Stroustrup

Contents
1.1 General context: Feature extraction . . . . . . . . . . . 1

1.2 Specific context: Image processing . . . . . . . . . . . . 3

1.3 Research questions . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . 5

Machine Learning can be described as the science of making a computer take a
decision without telling it how exactly to perform this task. For this, a model
is presented with a large quantity of data and the associated expected responses.
From this data, the model is able to learn a mathematical model of how to bind
the response, or label, to the input, in such a way that it can predict the correct
response, generalizing for inputs that have not yet been seen. This form of learning
using labels is known as supervised learning.

1.1 General context: Feature extraction

Nowadays, Machine Learning is used to analyze more and more data and the
available data is becoming more and more complex. In the last decade, the advent
of Deep Learning helped in creating more efficient learning models. Many Machine
Learning tasks are targeting classification problems. Such systems work in a way
similar to what is shown on Figure 1.1. First, features are extracted from the input
data. This can be seen as creating a new representation of the data specifically for
the current task. A classification system is then learned on top of these features
to achieve the task. Once trained, the system should now be able to be used on
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1.1. General context: Feature extraction CHAPTER 1. INTRODUCTION

Figure 1.1: A typical supervised Machine Learning model, for classification tasks.
The model is trained using some algorithm and some training data. It can then
be used to predict a label from any input.

data that have not yet been seen during the training phase and accurately predict
its response, in this case, the class label. Often, and especially until recent years,
the features extracted from the input were handcrafted features. This qualification
means that such features are designed especially for the input data and the task at
hand. They are generally tied not only to the type of data, for instance images of
handwritten words, but to a specific subset such as images of English handwritten
words written with ink on parchment. Most of these features are generally not
robust to change.

Another approach to extract features from the data is to learn a feature extractor
using Machine Learning. Instead of building a system to classify some images, a
learning system is built to extract features from the input. In the case of images,
this means that the network is learning higher-level features directly from the input
pixels. We believe that this approach is superior to using handcrafted features,
for several reasons. By training a model on each data set, the trained model can
be adapted to many types of inputs whereas handcrafted features may require
hand-tuning for each data set. Moreover, this approach should not need an expert
knowledge of the images being analyzed.

The main idea behind this thesis is the in-depth analysis of techniques for feature
extraction from data. As shown in the following section, a special focus is given to
feature extraction from images and more specifically from handwriting. The class

2 Baptiste Wicht



CHAPTER 1. INTRODUCTION 1.2. Specific context: Image processing

of feature learning methods analysed in this tehsis is also scoped by the previous
work of Geoffrey Hinton, the so-called "Hinton Approach".

1.2 Specific context: Image processing

A large part of the work of Machine Learning nowadays is in relation with images.
There are very large collections of images available freely on the Internet. Even
labeled image data sets are somewhat abundant compared to other fields of re-
search. On the other hand, images have a tendency of being complex. Although
they are generally easy to understand by the human, they may present a lot of
difficulty to a computer model. Moreover, they also can be of high dimensionality,
making them harder to process in a reasonable amount of time. Finally, images
can be very different depending on the conditions in which they were taken. The
quality of the capture makes large differences in how the images can be analyzed.

Because of their complexity and dimensionality, most of the ongoing research is
using some methods to find spatial dependencies inside the image to be able to
learn features that can be shared across the complete image rather than be specific
to pixels. For this, the Convolutional Neural Network (CNN) and Long Short Term
Memory (LSTM) models have proven very successful. In this research, we will
focus on the use of convolutional models to solve some problems of image analysis.
By the use of convolution, the network is learning feature detectors shared among
all locations of an image. For instance, one of its feature detectors could detect a
red dot anywhere in the image, rather than detecting a red dot in the upper left
corner. Convolution also has the advantage that the number of weights that need
to be learned is much smaller than the number of weights for a standard neural
network. When learning deep representations of images, the goal is that each
layer learns a more specialized feature set on top of the previous layer features.
For instance, if we were trying to detect images of cars in a large data set, the first
layer could learn to detect oriented edges, the second layer to detect car parts and
the last one to combine parts to form different types of cars.

Deep Learning, a seemingly new trend in Machine Learning, has proven very suc-
cessful in solving difficult problems such as classifying very large images or data
with many classes. Research in Deep Learning was restarted when Hinton and
Salakhutdinov introduced a new approach, able to pretrain a neural network in
an unsupervised manner. This particular approach, the "Hinton approach" con-
sists in using Restricted Boltzmann Machine (RBM), Convolutional Restricted
Boltzmann Machine (CRBM) and Deep Belief Network (DBN) either to improve
classification results via pretraining or to extract features from images in an un-
supervised way. While Deep Learning evolved in several other directions starting
from this breakthrough, in this thesis, we are particularly interested on the original
approach of Hinton about Deep Learning.

In the broader concept of image processing, we also focused especially on handwrit-
ten inputs for which still challenging tasks are in front of the research community.

Baptiste Wicht 3



1.3. Research questions CHAPTER 1. INTRODUCTION

More specifically, contributions are done in this thesis in the context of two dif-
ferent experiments: mixed printed and handwritten digit recognition for Sudoku
Recognition and Handwritten Keyword Spotting. This task allowed us to observe
the effect of pretraining a neural network with RBM and CRBM. Pragmatically,
profiting from an already existing Sudoku Recognition data set, we have developed
a system able to detect and recognize a Sudoku puzzle in an image taken from a
phone camera in a newspaper. Chapter 5 is partially related to this experiment.
In a second time, we have focused on the task of Handwritten Keyword Spotting,
consisting in finding all the occurrences of a given word in a set of images from his-
torical documents, without using transcription. This problem has the advantage
that there are several baseline handcrafted feature sets for it, making it a good
basis for comparing against automatically generated feature sets. Moreover, the
available baseline systems are generally using two very different types of classifier,
making it perfectly suited to test how features are tied to a particular Machine
Learning model. The results of using unsupervised learning for feature extraction
on the task of Handwritten Keyword Spotting are presented in Chapter 6. Then,
taking advantage of this system as a way to compare different feature extractors,
the RBM models are compared against regular auto-encoders. The results of the
comparison between these systems are presented in Chapter 7.

1.3 Research questions

In this thesis, we are using neural networks to extract features from images. Specif-
ically, we are using the "Hinton" Deep Learning approach with the RBM and
CRBM models to learn a deep representation of the input. It was already shown
that these techniques can be used to improve a classification model by providing
a good initialization of its weights. They are able to extract features from images
that can then be used for classification by other advanced classifier such as Sup-
port Vector Machine (SVM). Our constitutive hypothesis is that such techniques
are able to learn good feature representation from images and that such features
can be used even with basic classifiers, such as template matching techniques. In
this thesis, we focus on the advantages of using automatic feature learning rather
than handcrafted features.

Under the assumption that the RBM and CRBM models can generate good fea-
tures from images, we propose the following scientific questions that this thesis
will try to address:

1. What are the advantages of unsupervised pretraining in the context of train-
ing neural networks for classification ?

2. Does pretraining work in the same way for standard models and convolutional
models ?

3. What are the advantages of automatic feature extraction compared to hand-
crafted features ?
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4. How much tuning of the model and training is necessary to generate features
to be used by basic classifiers ?

5. Can the same features easily be used by different classifiers ?

6. How does the RBM and CRBM approaches compare to other alternatives
for feature extraction ?

Further to these more fundamental questions, we also try to address specific ques-
tions that are related to the conducted experiments:

1. In the context of Sudoku Recognition, can a single network efficiently learn
from two different types of inputs (computer-generated and handwritten) ?

2. In the context of Handwritten Keyword Spotting, are features learned on
grayscale images superior to features learned on binary images ?

3. How does the machine learning framework developed for this research com-
pare to other popular alternatives in terms of accuracy and runtime perfor-
mance ?

1.4 Outline of the thesis

This thesis is organized as follows.

• Chapter 1 Introduction
In this first Chapter, the general and the specific contexts of this thesis are
introduced, respectively feature extraction and image processing. After this,
the constitutive hypothesis and the scientific and specific questions that this
thesis addresses are presented. Finally, the different chapters of this report
are outlined.

Part I Theory

• Chapter 2 Fundamentals
In this Chapter, the fundamental background on which this thesis is based
is described. This starts with an introduction to Machine Learning and es-
pecially to Deep Learning. It then goes on to introduce the RBM model
which is the main building block of this research. How to train this model is
covered in detail. From there, building upon the RBM, higher level networks
are introduced by stacking. The convolutional versions of the standard mod-
els are also considered as well as some of the most popular variants of the
RBM.
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• Chapter 3 Semi-Supervised Training
The third Chapter focuses on the unsupervised pretraining of feed-forward
neural networks in order to improve supervised training in a second phase,
in the context of classification problems. It presents the general concept of
pretraining and its advantages. It then provides a list of the most important
improvements that have been made to neural network training since the
advent of pretraining. Finally, a summary of this form of pretraining is
presented.

• Chapter 4 Framework
Chapter 4 presents the Deep Learning library that was developed during the
course of this research. This library was used to perform all the experiments
presented in this thesis. The features of the framework are presented in detail
as well as the most important points of implementation such as performance
considerations and memory consumption.

Part II Applications

• Chapter 5 Sudoku Recognition
The fifth Chapter summarizes the experiments that were performed on de-
tection and recognition of mixed printed and handwritten digits collected
in the context of Sudoku puzzle images taken with a phone camera. The
data set that was collected and used for this research is presented, as well as
the state of the art for this problem. The different steps of the detection of
the puzzle are also outlined. Then, the different classifiers that are used for
this task are presented. Finally, the results and runtime performance of the
proposed systems are analyzed and the overall results of the experiments are
summarized.

• Chapter 6 Keyword Spotting
This Chapter investigates the use of fully unsupervised feature learning with
convolutional models for a keyword spotting task on handwritten documents.
First, the state of the art for this task is analyzed. Then, the features learned
with this model are compared against three reference feature sets applied on
three different data sets. Two different classifiers are used and compared, a
simple classifier and a complex learning-based classifier. The results obtained
under these different configurations are discussed in detail, as well as the
efficiency of the different models. Finally, conclusions are drawn regarding
the use of these features compared to standard features.

• Chapter 7 Auto-encoders
In this final evaluation, the features generated from RBM and CRBM are
compared to the features generated by regular auto-encoders on the key-
word spotting task. Several variants of models are investigated, from dense
auto-encoders to convolutional auto-encoders, as well as deep and stacked
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auto-encoders and denoising auto-encoders. Finally, the advantages and dis-
advantages of the RBM and CRBM approaches are summarized compared
to these alternatives.

Part III Conclusion

• Chapter 8 Conclusion
This Chapter concludes the thesis. The scientific questions addressed in this
Introduction are recapitulated and detailed answers are provided for each of
them. Directions for future work are also presented.
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Chapter 2

Fundamentals

In deep learning, the algorithms we use now are versions of
the algorithms we were developing in the 1980s and the 1990s

Geoffrey Hinton
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2.1 Introduction to Machine Learning

This thesis focuses on extracting features from images directly with Machine Learn-
ing rather than relying on handcrafted feature extractors. Machine Learning is a
science aiming at getting machines to learn solutions to specific problems with-
out being explicitly programmed into doing so (Murphy, 2012). Many Machine
Learning solutions have been derived from our knowledge of the human brain.

Machine Learning models are used to solve two main tasks: classification and
regression (Bishop, 2006). Classification is the task of assigning a label to an
input while regression generates a continuous output. A classification problem
would be, for example, to detect images of cats in a large set of images while a
regression problem would be to predict the price of a house given its characteristics.

To solve these two problems, three approaches are particularly considered:

• Supervised learning : The model is learned from the input and the expected
output data. This is the most common form of learning. Indeed, most
training algorithms are computing an initial output, comparing it with the
expected output and adapting the system to be closer to the expected data.

• Unsupervised learning : The model is learned only from the input data. This
approach is particularly useful in practice since unlabeled data is abundant
while labeled data is more scarce and requires a lot of effort to collect. How-
ever, due to its unsupervised characteristic, this technique cannot be used
directly for classification. It is rather used to automatically discover struc-
tures in the input space such as the presence of clusters.

• Semi-Supervised learning (or Semi-Unsupervised learning): Both kinds of
data are used to train the model. The model is first pretrained using unsu-
pervised data and then improved with supervised data. There is generally
more unsupervised data available and this approach makes use of this ad-
vantage. It is also possible to train a model using both types of data at once,
but this is more complex and rarely used.

In this thesis, we are particularly interested in the use of unlabeled data, either for
fully unsupervised learning and feature extraction or for later supervised training,
for classification problems.
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2.1.1 Mathematical formalism

The objective of supervised learning can be generalized as learning a good approx-
imation of an unknown function y = 𝑓(x), where x denotes an input vector and
y the expected output. The learning process assumes the availability of repre-
sentative training examples (xn,yn). The goal is to learn a mapping function ŷ,
through the learning process, that approximates 𝑓(x):

ŷ = 𝑓(x) (2.1)

The learning objective is to make ŷ as close as possible to the actual y, a property
known as convergence. The learned mapping function uses some parameters, or
weights. The set of parameters is generally denoted as 𝜃, thus the mapping function
is sometimes defined as 𝑓𝜃(x). The learning process will progressively adapt these
weights in order to make the ŷ vector converge to y. In order to do this, the
learning process will use a cost function 𝐽(𝜃). The cost function is measuring how
good the mapping function is with the given parameters. It is defined differently
for each model and each training procedure. However, the objective will always
be to minimize 𝐽(𝜃). Generally, learning algorithms are looking for the minimum
of the cost function by iteratively moving the parameters in the opposite direction
of the gradient of the cost function with:

𝜃𝑖 = 𝜃𝑖 − 𝜖
𝜕𝐽(𝜃)

𝜕𝜃𝑖
(2.2)

where 𝜖 is the learning rate, expressing the size of the step that is done in the di-
rection of the gradient descent. This is then repeated, until convergence is reached
or more generally some set goal is reached, such as going below some classification
error on an independent validation set. This approach is called gradient descent
and is the most popular training algorithm for neural networks. From this basic
idea, there exist many variations of training algorithms (Ngiam et al., 2011).

In classical machine learning, the input x is obtained through a preliminary step,
called feature extraction, aiming at converting the raw input o into a better suited
representation x:

x = 𝑔(o) (2.3)

Recently and especially since the advent of Deep Learning (See Section 2.3), the full
model is generally learned directly from the raw input, such as pixels from images,
and the network itself is learning new representations of the data. Therefore, the
input data is directly the raw input data:

Baptiste Wicht 13



2.2. Neural Network CHAPTER 2. FUNDAMENTALS

Figure 2.1: An exemplary feed-forward neural network with three layers. The input
layer will receive the input data, a vector x of D elements, in this case D = 3. The
hidden layer will compute a new representation of the input. Finally, the output
layer will compute the answer ỹ of the network from the hidden representation.
Assuming an adequate learning process with convergence, the ỹ may represent the
probabilities of observing 2 objects in the exemplary image. Each edge between
two neurons is associated to a weight.

x = o (2.4)

This is one of the advantages of Deep Learning, for which feature extraction be-
comes less necessary. Nevertheless, it has been shown that combining standard
feature extractors and features extracted with Deep Learning can improve the
performance of the overall system at the cost of an extra complexity (Lan et
al., 2016; Sargano, Angelov, and Habib, 2017; Majtner, Yildirim-Yayilgan, and
Hardeberg, 2016).

2.2 Neural Network

An Artificial Neural Network (ANN), or neural network, is a Machine Learning
model inspired by cells in the human brain. We may refer to (Murphy, 2012) as a
general introduction to ANNs. Such networks are used to approximate a function
depending on a very large number of inputs. The concept of neural network is
central to this thesis and to Machine Learning in general.

A neural network is typically designed in layers and is characterized by three main
features:
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1. Its architecture is defined by its number of layers, the number of neurons
in each layer and the connections between the neurons. In the most simple
case of feed-forward neural networks, there are only connections between the
neurons of one layer and the neurons of the next layer. The first layer is
called the input layer, the last layer is the output layer and the intermediate
layers are called hidden layers. A example of neural network with three layers
is shown in Figure 2.1. Each neuron has an associated value and this value
is either given by the data (for the input layer) or computed from the set
of its inputs, given by the previous layer. Before being passed to the next
layer, the output of a layer is generally passed through an activation.

2. The activation function defines the mathematical function that is used to
compute the state of a neuron based on the values of its inputs. To avoid the
output being a linear representation of the inputs, the activation function is
generally a non-linear function such as the hyperbolic tangent or the logistic
sigmoid. The connections between the neurons, sometimes called synapses,
have an associated weight that is used so that each neuron can weight indi-
vidually each of its inputs. These weights are representing the "intelligence"
of the system. The architecture of the network plus its trained weights is
considered as the trained model.

3. The last characteristic of a neural network is the learning rule that is used to
update its weights so that the function is approximated as well as possible.
It is not considered as a part of the model since it is not used anymore after
training.

The original neural network model, called the perceptron, was designed in 1958
(Rosenblatt, 1958). This model is the simplest form of neural network with two
layers and a very simple activation function based on addition and multiplica-
tion. Moreover, this model is guaranteed to converge in a finite number of steps
(Rosenblatt, 1958). Minsky et al. demonstrated that models with a single layer
are only able to learn linearly separable functions. Moreover, they also have shown
that adding a single hidden layer to the model solves this problem (Minsky and
Papert, 1969). One of the first multi-layer models that was introduced was the
Neocognitron model (Fukushima, 1980).

Neural networks with hidden layers are generally called Multi-Layer Perceptrons
(MLPs). It was shown that such models can be qualified of universal approx-
imators. Indeed, a sufficiently large MLP could, in principle, approximate any
function (Hornik, Stinchcombe, and White, 1989). The backpropagation algo-
rithm, was introduced in 1982 as a general learning procedure for neural network
(Werbos, 1982). It was later improved to handle more types of neural networks
(LeCun, Boser, et al., 1989). The main form of backpropagation is the Stochastic
Gradient Descent (SGD) algorithm (often used as synonym of backpropagation).
This algorithm is the most used nowadays to train neural networks. This iterative
algorithm presents one input of the problem to the network, computes the values
of the output layer and compares them with the expected output. The difference,
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called the error, is then propagated back to each layer from the output layer to the
input layer. For each layer, the gradients of the errors are computed and applied
to its weights. This process is repeated for each example from the data set and
then repeated again as long as the objective classification error is not reached. One
application of the entire data set is called an epoch.

The network must learn a general solution and not a solution that is too tightly
coupled with the training examples, a problem known as overfitting. Indeed, the
goal is not to classify these training samples, but rather to classify samples from an
independent test set composed of unseen data. For this, regularization methods
are used during training. There are several methods for this, the most simple
techniques are simply constraining the weights to not grow too large while other
techniques are adding stochastic information during training to not let the network
know too much about the exact training samples (Srivastava et al., 2014). The
use of data augmentation (generating artificial samples from the existing samples)
is also a very efficient technique to solve overfitting (Jarrett, Kavukcuoglu, Lecun,
et al., 2009).

There are two main families of neural network:

1. Feed-forward neural network: This is the earliest form of neural network and
arguably the simplest. The defining point of a feed-forward neural network is
the absence of cycles in the graph of the connections between neurons. The
information moves only in one direction, from the input layer to the output
layer, generally without any jumps around layers. The examples elaborated
in this Section are feed-forward neural networks.

2. Recurrent Neural Networks (RNNs): There are cycles in the graph of the
neuron connections. These cycles are time "delayed", giving the network
the capability to take an internal state and which gives it temporal-like
behaviour. These networks have proved very efficient for speech recogni-
tion (Sak, A. W. Senior, and Beaufays, 2014) and handwriting recognition
(Graves et al., 2009) and even for image classification (Pinheiro and Col-
lobert, 2014) in which they are able to learn the local dependencies between
pixels. At the time of writing this document, the most used and successful
recurrent model is the Long Short Term Memory (LSTM) model (Hochreiter
and Schmidhuber, 1997).

This thesis solely focuses on feed-forward neural networks. There are several fam-
ilies of feed-forward networks depending on the connectivity of the neurons. In
this work, we are most interested in two main families: Fully Connected Neural
Networks (FCNNs) and Convolutional Neural Networks (CNNs).

The topology of a FCNN, or dense network, is the most classical one where every
neuron from one layer is directly connected to every neuron in the next layer (See
Figure 2.1 for instance). For an image input, it means that every output neuron
is connected to every pixel in the input image. Each layer of such a network has
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Figure 2.2: A Convolutional Neural Network with two convolutional layers and
two pooling layers. The input layer will receive the input data. The final layer is
simply the concatenation of the feature maps of the previous layer.

a matrix W of weights connecting the input (or visible) units v and the output
(or hidden) units h. It also has a vector of visible biases b. Instead of being a
linear combination of the inputs, the networks are generally using a non-linear
activation function 𝑁(x) such as the logistic sigmoid or the hyperbolic tangent in
the mapping function. For instance, for a network with one layer and an activation
function 𝑁(x), the mapping function is:

ŷ = h = 𝑓(x) = 𝑁(b+ x *W) (2.5)

When a network with several layers is used, a mapping function is used for each
layer and the outputs from the first layer are passed to the next layer. For instance,
with one hidden layer:

h1 = 𝑓1(x) = 𝑁1(b1 + x *W1) (2.6)

ŷ = h2 = 𝑓2(h1) = 𝑁2(b2 + h1 *W2) (2.7)

This is easily generalized to more layers. The mapping function of the complete
network is the combination of the mapping functions of each layer. The training
objective will be to select the weights and biases for each layer in order to minimize
the overall cost function.

In CNNs, the connectivity between layers is done using a convolution, generally
two-dimensional. In such a model, each set of weights is shared on the entire
image rather than being tied to a spatial location. This model has been developed
from the model of the visual cortex where the neurons connected to the retina are
arranged in layers and each layer has access to a larger receptive field than the
previous one (Hubel and Wiesel, 1962). Moreover, neurons adjacent to each other
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also have adjacent receptive fields in the retina. In convolutional networks, each
output neuron is connected to only a portion of the input space (LeCun, Bottou,
et al., 1998). An example of CNN is shown in Figure 2.2. Inputs of type image
in a CNN are generally three-dimensional along the x and y axes and the color
channels with respectively, dimensions 𝑁1

𝑉 for the width, 𝑁2
𝑉 for the height and 𝐶

for the number of channels. The number of channels is generally the number of
color channels in image inputs (one for grayscale and binary and three for color
images). There are generally 𝐾 groups of output neurons in that configuration
and each group has a set of weights W𝑘 (only one set per group, not per neuron,
thus the name of shared weights) to compute the output values from the set of
inputs. Since the units are connected using a two-dimensional convolution, each
set of weights is a two-dimensional convolutional kernel ([𝑁1

𝐾 , 𝑁
2
𝐾 ]). Moreover,

the input channels are generally combined together and do not appear in the
outputs. Therefore, there is also a set of weights per input channel, making the
matrix W four-dimensional ([𝐶,𝐾,𝑁1

𝐾 , 𝑁
2
𝐾 ]). Thus, the output is also three-

dimensional (𝐾, the output width 𝑁1
𝐻 and the output height 𝑁2

𝐻). Each of the
𝐾 groups is producing a two-dimensional feature map using its own convolutional
matrix. Generally, each group also has one bias b𝑘. If we consider images as
input, each output neuron would be connected to a small window in the image.
Contrary to a fully-connected ANN, a CNN will generate a set of feature maps
for each input. Each convolutional layer has access to a larger part of the input
than its predecessor. Convolutional layer are often followed by pooling layers that
are shrinking the representation. This model is more recent than fully-connected
networks and is the current state of the art for image analysis problems with feed-
forward neural networks. The mapping function can be defined similarly as for
the dense layer. For instance, for one convolutional layer:

ŷ𝑘 = H𝑘 = 𝑓(x) = 𝑁(b𝑘 +
𝐶∑︁
𝑐=1

(W̃𝑘
𝑐 ∙𝑣 x)) (2.8)

When several layers are used, the combination is the same as for a fully-connected
network, the output of one layer becomes the input of the next layer. However,
generally, the expected output y is not three-dimensional. Therefore, convolu-
tional layers are generally followed by final dense layers for computing the final ŷ.
Although this network is now composed of both dense and convolutional layers,
the result is still called a CNN. For a network with one convolutional layer and
one dense layer, the mapping function can be composed as such:

H𝑘
1 = 𝑓(x) = 𝑁1(b

𝑘 +
𝐶∑︁
𝑐=1

(W̃𝑘
𝑐 ∙𝑣 x)) (2.9)

ℎ1 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛([𝐻0
1 , 𝐻

1
1 , ..., 𝐻

𝐾
1 ]) (2.10)

ŷ = h2 = 𝑓2(h1) = 𝑁2(b2 + h1 *W2) (2.11)
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The three-dimensional matrix output of the first layer is flattened as a vector for
the second layer. Again, this can easily be expanded for more layers. In theory,
networks composed of arbitrary number of layers could be created. Nevertheless,
networks with many layers are harder to train for both computational reasons and
problems such as the vanishing gradient (See the next Section).

2.3 Deep Learning

While generally presented as a new trend in Machine Learning, Deep Learning
is already several decades old. Indeed, as seen in the previous Section, it dates
back to the first multi-layer ANN, introduced in the 1980s. However, training such
models was impractical, due to the long training times and the small processing
power available at the time. Moreover, these structures also suffered from the
so-called vanishing gradient problem (Hochreiter, 1991). When training a deep
neural network with gradient descent, each weight receives an update proportional
to the gradient of the error with respect to the current weight. These gradients
are generally small numbers (in the [-1, 1] range). For a network with 𝑁 layers,
the gradient of the first layer is composed of the multiplication of 𝑁 of these small
numbers, resulting in an even smaller number. Due to this problem, networks
with more than one hidden layer were difficult to train. Moreover, the weights of
these networks were randomly initialized, making the convergence of the training
highly dependent on the quality of the random initialization. Indeed, training may
be stuck in a local minima due to poor initial conditions. Several very advanced
training algorithm have been developed to overcome this issue (Ngiam et al.,
2011), such as Marquardt (Hagan and Menhaj, 1994), Conjugate Gradient (CG)
(Blue and Grother, 1992) or Limited-Memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) (Byrd et al., 1995). However, these techniques, while successful, make
the training of deep models a very complicated process. Finally, the training of
neural networks only uses labeled data, which are costly to produce, almost all
data being unlabeled in practice. Due to these issues, simpler models such as the
Support Vector Machine (SVM) became the popular choice in the 1990s and early
2000s and progress in Deep Learning was cut short and was only researched by
few groups.

Deep Learning regained adoption after Hinton and Salakhutdinov presented a novel
way to pre-train a multi-layer feed-forward neural network, in an efficient man-
ner, one layer at a time, using several Restricted Boltzmann Machines (RBMs)
stacked in a model called a Deep Belief Network (DBN) (G. E. Hinton, Osin-
dero, and Teh, 2006; G. E. Hinton and Salakhutdinov, 2006; G. E. Hinton, 2007).
The complete network was then fine-tuned using standard backpropagation. This
particular method achieved state of the art results and beat the best SVM at the
time, without considering against results using data augmentation. Since then,
Deep Learning gained wide adoption and it restarted research on deep networks,
especially CNNs. From this point on, Deep Learning technologies achieved numer-
ous outstanding results.
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We can observe that there are two "branches" of Deep Learning. The first, the
"Hinton approach", is following the Hinton original approach and uses RBM and its
variants to initialize the weights of large neural networks that are then fine-tuned
for classification. These networks can also be directly used for feature extraction.
The second "branch" has followed the restart of Deep Learning to train larger and
larger neural networks. This has led to many new techniques such as Dropout
(Srivastava et al., 2014) and Batch Normalization (Ioffe and Szegedy, 2015).
This also led to the design of very deep networks such as the Inception Network
(Szegedy, Liu, et al., 2015) or the Residual Network (He et al., 2016) composed
of more than twenty layers. These new techniques and models allowed researchers
to train networks that were thought to be untrainable a decade ago. Although
the first "branch" was very popular at first and led to several breakthroughs, the
second branch ended up overshadowing it with purely supervised learning (LeCun,
Bengio, and G. E. Hinton, 2015). Chapter 3 analyzes the reasons of this decline.

Deep networks have also largely been helped by the advances in hardware which
is much faster than thirty years ago and the introduction of Graphical Process-
ing Units (GPUs) as a general-purpose processing unit. When the new training
techniques and new hardware are used together for training learning models, it is
now possible to train very large networks orders of magnitude faster than it used
to be at the beginning of Deep Learning research. This somehow decreases the
importance of unsupervised pretraining as an initialization of the weights to speed
up training since training is now significantly easier than it used to be.

Deep Learning comprises a large number of models and concepts such as MLP,
DBN, CNN, RNN and Deep SVM. This thesis focuses on the family of networks
based on the RBM and Convolutional Restricted Boltzmann Machine (CRBM)
models, the so-called "Hinton approach", detailed in the next Section.

2.4 Restricted Boltzman Machine

A Restricted Boltzmann Machine (RBM) is a generative stochastic ANN. It is a
model especially made to learn a probability distribution over the inputs. They
were initially introduced by Smolensky et al. in 1986, under the name Harmonium
(Smolensky, 1986). Although they are quite ancient models, they only rose to a
large audience after Hinton et al. invented a fast learning algorithm to train them
in 2002 (G. E. Hinton, 2002).

An RBM is a variant of the normal class of Boltzmann Machine, proposed by
Hinton et al. (Ackley, G. E. Hinton, and Sejnowski, 1985). Figure 2.3 illustrates
an RBM. It is made of two layers, a visible layer and a hidden layer. Both layers
contain a certain number of units (or neurons). In an RBM, the "restricted" means
that neurons form a bipartite graph, i.e. there are no connections between units
of the same group. This special restriction makes for more efficient algorithms to
train the model, contrary to the general class of Boltzmann Machines. In essence,
an RBM is a simple ANN with a single visible layer and an output layer and
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Figure 2.3: Abstract view of a Restricted Boltzmann Machine, with four visible
units v and three hidden units h. There are no connections between units of the
same layer.

no hidden layers in between. It can also be viewed as an unfolded neural network
with three layers, the output layer having the same number of neurons as the input
layer, and using a common set of weights for both layers. The main difference is
how the model is trained and in its ability to reconstruct its input from its output.

An RBM model can be represented with a vector v of 𝑀 visible units, a vector h
of 𝑁 hidden units, a matrix W of weights connecting the visible and the hidden
units ([𝑀 × 𝑁 ] matrix), a vector b of 𝑀 visible biases and a vector c of 𝑁
hidden biases. As a standard neural network, the weights are directly connected,
meaning that an output neuron is connected to each input neuron. This means
that the mapping function uses the matrix multiplication operation to connect
the two layers. Contrary to standard neural networks, a unit has a probability
and a state and both are used during training. The activation probability is the
probability of a unit to be activated while the state is the result of sampling the
probability. When an RBM is used as a feature extractor, the extracted features
are the activation probabilities of the output (hidden) layer.

In Energy Based Models (EBMs), any configuration of the units has a scalar energy
(Hopfield, 1982). The energy of a joint configuration can be used to compute its
probability. In the case of an EBM with hidden units, such as the RBM, the
probability of a joint configuration of the visible and hidden units can be expressed
directly:

𝑝(v,h) =
1

𝑍
𝑒−𝐸(v,h) (2.12)

where 𝑍 represents the partition function of the model. It can be computed using
the sum of the energies of all the possible joint configurations of the visible and
hidden units:
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𝑍 =
∑︁
v,h

𝑒−𝐸(v,h) (2.13)

However, computing Z is in practice untractable as it involves a summation over
all potential combinations of (v, h) vectors. If 𝜃 represents the parameters of
the system (𝜃 = (W,b, c) for a standard RBM), 𝑍(𝜃) is called the normalization
constant of the model.

The probability of the observed variables can also be expressed in terms of the
probabilities of the joint configurations:

𝑝(v) =
1

𝑍

∑︁
h

𝑒−𝐸(v,h) (2.14)

The energy of a joint configuration of the visible and hidden units in an RBM can
be defined in terms of its components:

𝐸(v,h) = −(b · v)− (c · h)− (h · (W * v)) (2.15)

The free energy 𝐹 (v) of an EBM for a visible vector v corresponds to the en-
ergy that a configuration would need to have the same probability as all of the
configurations containing v:

𝑒−𝐹 (v) =
∑︁
h

𝑒−𝐸(v,h) (2.16)

𝐹 (v) = − log
∑︁
h

𝑒−𝐸(v,h) (2.17)

The free energy can also be used to express 𝑝(v):

𝑝(v) =
1

𝑍
𝑒−𝐹 (v) (2.18)

From the definition of 𝐹 (v) and 𝐸(v,h), the free energy function of an RBM can
be completely derived:

𝐹 (v) = −(b · v)−
∑︁
v

𝑙𝑜𝑔
∑︁
h

𝑒h(c+Wv) (2.19)
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Since a lower energy for a pattern corresponds to an higher probability for this
pattern to be generated, the training of the RBM will try to minimize the free
energy of the training patterns and to maximize the free energy of the other pat-
terns. In other words, the training shall maximize 𝑝(v), implying a minimization
of 𝐹 (v).

Free energy itself has several uses. It can be used as a way to monitor overfitting,
by comparing the difference between the free energy on the training set and the
validation set. The partition function being the same for both sets with the same
model, the comparison of free energies is meaningful. It can also be used for
classification when separate RBMs are used for each class. For each sample to
classify, the free energy of this sample on each RBM is computed and then a
softmax classifier is trained on top of the free energies.

Since visible and hidden units are conditionally independent given one-another,
the general probability activation functions can be defined, for a general case, as:

𝑝(h|v) =
∏︁
h

𝑝(h|v) (2.20)

𝑝(v|h) =
∏︁
v

𝑝(v|h) (2.21)

In practice, the general formulas for the RBM are not used as such but are sim-
plified for each sub-type of RBM, based on the types of visible and hidden units.
Once simplified, these formulas allow to make inference in an RBM relatively
straightforward.

2.4.1 Binary-Binary Restricted Boltzmann Machine

The original RBM was developed for binary-valued inputs. It consists of binary
visible units and binary hidden units. A binary unit is based on the logistic sigmoid
activation function and uses Bernoulli sampling to sample its state. Binary units
are also called Bernoulli units. This is the most common type of RBM. When
both units are binary, the activation functions can be defined as:

h𝑗 = 𝑝(h𝑗 = 1|v) = 𝜎(c𝑗 +
𝑀∑︁
𝑖=1

v𝑖W𝑖,𝑗) (2.22)

v𝑖 = 𝑝(v𝑖 = 1|h) = 𝜎(b𝑖 +
𝑁∑︁
𝑗=1

h𝑗W𝑖,𝑗) (2.23)

or in vector form:
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h = 𝜎(c+ v *W) (2.24)
v = 𝜎(b+W * h) (2.25)

where the logistic sigmoid function 𝜎 is defined as:

𝜎(𝑥) =
1

1 + 𝑒−𝑥
(2.26)

The result of the activation function for a unit is called its activation probability.
The states of the units are obtained by sampling these activation probabilities.
Each type of unit has a sampling function 𝑆(𝑥) that is used to obtain the state
of the unit from its activation. For binary units, the states are obtained using
Bernoulli sampling:

𝑆(𝑥) =

{︃
1 if x > Unif(0, 1)
0 otherwise

(2.27)

h′
𝑗 = 𝑆(h𝑗) (2.28)

v′
𝑗 = 𝑆(v𝑗) (2.29)

For example the state h′
𝑗 is set to 1 if the computed activation h𝑗 is bigger than

a sample in an uniform distribution computed between 0 and 1. These states are
generally only used during learning.

When both layers are made of binary units, the free energy function further sim-
plifies to:

𝐹 (v) = −(b · v)−
𝑁∑︁
𝑗=1

𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(c𝑗 +
𝑀∑︁
𝑖=1

v𝑖W𝑖,𝑗)) (2.30)

This particular RBM model is the most common and most general variant of RBM.
However, since the introduction of the RBM, different types of units have been
developed, for various purposes, as shown in Section 2.4.6. Moreover, different
variants of RBM have also been proposed (See Section 2.8).

2.4.2 Training

As indicated before, the goal of training an RBM is to make it model the input
distribution as well as possible. For this, the input samples must be made more
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likely and the other samples less likely during training. In other words, the proba-
bilities of the input samples 𝑝(x) must be maximized. For this, the following cost
function can be defined:

𝐽 = − 1

𝑁

𝑁∏︁
𝑖=1

𝑝(x𝑖) (2.31)

In practice, logarithms of the probabilities are generally preferred in order to im-
prove stability:

𝐽 =
1

𝑁

𝑁∑︁
𝑖=1

−𝑙𝑜𝑔(𝑝(x𝑖)) (2.32)

This is equivalent to the average of Negative Log-Likelihood (NLL) cost function.
To minimize this cost function, stochastic gradient descent can be used, implying
the derivative of the function for one sample with respect to the parameters of the
system:

𝐽(𝜃) =
𝜕 − 𝑙𝑜𝑔(𝑝(x𝑖))

𝜕𝜃
(2.33)

= Eh

[︂
𝜕𝐸(x𝑖,h)

𝜕𝜃

⃒⃒⃒⃒
x𝑖

]︂
⏟  ⏞  

positive phase

−Ex,h

[︂
𝜕𝐸(x,h)

𝜕𝜃

]︂
⏟  ⏞  

negative phase

(2.34)

The two parts of the gradients are generally referred as the positive and nega-
tive phases. The gradients of the positive phase can be carried out since it is
conditioned on the value of a training sample. However, the gradients of the nega-
tive phase are intractable. Therefore, it is necessary to approximate this negative
term in order to efficiently perform gradient descent. For this, the Contrastive
Divergence (CD) algorithm is generally used, as seen in the following Section.

2.4.3 Contrastive Divergence

The general learning algorithm for Boltzmann Machine (G. E. Hinton and Se-
jnowski, 1986) is fairly simple. It tries to minimize the Kullback-Leibler diver-
gence (Kullback and Leibler, 1951) of the real distribution and the distribution
generated by the model. From this, the gradient 𝐺 can be derived easily and a
gradient descent procedure can be used to optimize the distribution. However,
this procedure is slow to converge in practice and the time to reach a temperature
equilibrium grows exponentially with the size of the model. This is the main reason
why general Boltzmann Machines did not have many practical applications.
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While an RBM could be trained using the general Boltzmann Machine learning
algorithm, its bipartite graph property allows for more efficient training. The
most often used algorithm to train an RBM is the Contrastive Divergence (CD)
algorithm. This algorithm has been initially developed to train Product of Experts
(PoE) (G. E. Hinton, 2002) and has then been adapted for RBM (G. E. Hinton,
Osindero, and Teh, 2006). Indeed, since the probability of generating a visible
vector is linked to the probabilities of generating it by each of the hidden unit
individually (Freund and Haussler, 1994), an RBM can be viewed as a PoE with
one expert for each hidden unit.

Samples from an RBM can be obtained using Gibbs Sampling, a Markov Chain
Monte-Carlo (MCMC) algorithm, and running a Markov chain to convergence.
The CD algorithm is based on this sampling process, but does two specific op-
timizations. First, instead of starting at a random state of the visible units, it
starts at the state of a training vector. Moreover, instead of waiting for the con-
vergence of the Markov chain, it simply takes its state after 𝐾 steps. This has the
advantage of not requiring to perform alternating Gibbs Sampling for many iter-
ations. Overall, these improvements are making CD a very fast algorithm. This
learning rule is closely related to the gradient of the difference of two Kullback-
Liebler divergences. Although the objective does not exactly follow the gradient
of any function (Sutskever and Tieleman, 2010), it has been successful in many
applications.

Going back to Equation 2.34, this is equivalent to replacing the expectation of the
model by an estimate obtained by Gibbs sampling from the input.

Eh

[︂
𝜕𝐸(x𝑖,h)

𝜕𝜃

⃒⃒⃒⃒
x𝑖

]︂
⏟  ⏞  

positive phase

≈ 𝜕𝐸(x𝑖, 𝑝(h|x𝑖))

𝜕𝜃
(2.35)

Ex,h

[︂
𝜕𝐸(x,h)

𝜕𝜃

]︂
⏟  ⏞  

negative phase

≈ 𝜕𝐸(x̃, h̃)

𝜕𝜃
(2.36)

where x̃ and h̃ are obtained by Gibbs sampling. In fact, it can be shown that
for a Binary-Binary RBM, the positive phase value is not an approximation but
the correct value. Only the negative phase is approximate using Gibbs sampling
and CD. The partial derivatives of the 𝐸(x,h) with respect to the weights can be
obtained:

𝜕𝐸(x,h)

𝜕W𝑗,𝑘

=
𝜕 − (

∑︀
𝑗′,𝑘′ W𝑗′,𝑘′h𝑗′x𝑘′ −

∑︀
𝑘′ c𝑘′x𝑘′ −

∑︀
𝑗′ b𝑗′h𝑗′)

𝜕W𝑗,𝑘

(2.37)

=
𝜕 − (

∑︀
𝑗′,𝑘′ W𝑗′,𝑘′ℎ𝑗′x𝑘′)

𝜕W𝑗,𝑘

(2.38)

= −(h𝑗x𝑘) (2.39)
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Similarly, the partial derivatives with respect to the hidden biases can be obtained:

𝜕𝐸(x,h)

𝜕b𝑗

=
𝜕 − (

∑︀
𝑗′,𝑘′ W𝑗′,𝑘′h𝑗′x𝑘′ −

∑︀
𝑘′ c𝑘′x𝑘′ −

∑︀
𝑗′ b𝑗′h𝑗′)

𝜕b𝑗

(2.40)

=
𝜕 − (

∑︀
𝑗′ b𝑗′h𝑗′)

𝜕b𝑗

(2.41)

= −h𝑗 (2.42)

and, finally, with respect to the visible biases:

𝜕𝐸(x,h)

𝜕c𝑘
=

𝜕 − (
∑︀

𝑗′,𝑘′ W𝑗′,𝑘′h𝑗′x𝑘′ −
∑︀

𝑘′ c𝑘′x𝑘′ −
∑︀

𝑗′ b𝑗′h𝑗′)

𝜕c𝑘
(2.43)

=
𝜕 − (

∑︀
𝑘′ c𝑘′x𝑘′)

𝜕c𝑘
(2.44)

= −x𝑘 (2.45)

To summarize, the following derivatives in vector form are used:

𝜕𝐸(x,h)

𝜕W
= −(h⊗ x) = −hx𝑇 (2.46)

𝜕𝐸(x,h)

𝜕b
= −h (2.47)

𝜕𝐸(x,h)

𝜕c
= −x (2.48)

From this, the complete update rules using the positive and negative phases are
obtained:

W = W + 𝜖(v0 ⊗ h0 − v𝐾 ⊗ h𝐾) (2.49)
b = b+ 𝜖(v0 − v𝐾) (2.50)
c = c+ 𝜖(h0 − h𝐾) (2.51)

where v0⊗h0 represents the expectations under the input distribution and v𝐾⊗h𝐾

represents the expectations driven by the model.

The algorithm is illustrated in Figure 2.4. It is very similar to the stochastic
gradient descent procedure used to train an ANN with backpropagation. The
CD algorithm can be done with a certain number 𝐾 of steps of Gibbs sampling
(called CD-K). While increasing the number of steps highly improves the quality
of learning as an approximation of the maximum log-likelihood, CD-1 is generally
sufficient in practice when the RBM is used to learn to extract features or to
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Figure 2.4: Graphical representation of the Contrastive Divergence Algorithm.
The algorithm CD-K stops at t=K. Each iteration performs a full Gibbs step.

Algorithm 2.1 Standard CD-K algorithm. This performs one epoch of training
through the complete training set.

for all training sample x ∈ training set do
v0 = x
h0 = 𝑝(h|v0)
h

′0 = 𝑆(h0)
for 𝑘 ← 1, 𝐾 do

v𝑘 = 𝑝(v|h′𝑘−1)
h𝑘 = 𝑝(h|v𝑘)
h

′𝑘 = 𝑆(h𝑘)
end for
W𝑝𝑜𝑠 = v0 ⊗ h0

W𝑛𝑒𝑔 = v𝐾 ⊗ h𝐾

∇W = 𝜖(W𝑝𝑜𝑠 −W𝑛𝑒𝑔)
∇b = 𝜖(v0 − v𝐾)
∇c = 𝜖(h0 − h𝐾)
W = W +∇W
b = b+∇b
c = c+∇c

end for
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initialize the weights of a neural network (G. E. Hinton, 2012). Algorithm 2.1
defines the steps necessary for one epoch of CD-K.

This procedure is repeated for a certain number of epochs, until an acceptable
convergence is reached. The condition for stopping the training is not trivial and
depends on how the RBM will be used (see Section 2.4.4).

Similarly to the training of an ANN, momentum is generally used to speed up the
training. Momentum (Bertsekas, 1999) is a technique that limits the oscillations
of the gradient descent and accelerates the learning in the correct direction. This
is done by adding a fraction of the update at the past step to the current update.
This can be seen as pushing a ball down the hill. It will accumulate momentum
downhill, the target of training. When momentum is used, the weights update
equations must be updated as follows:

∇W(𝑡) = 𝛼∇W(𝑡− 1) + 𝜖(v0 ⊗ h0 − v𝐾 ⊗ h𝐾) (2.52)
∇b(𝑡) = 𝛼∇b(𝑡− 1) + 𝜖(v0 − v1) (2.53)
∇c(𝑡) = 𝛼∇c(𝑡− 1) + 𝜖(h0 − h1) (2.54)

The momentum (𝛼) is generally set to a value between 0.5 and 0.9. With a value
of zero, the momentum has no effect.

Similarly, regularization such as weight decay is often applied to the gradients.
This improves the mixing rate of the Gibbs Markov Chain, reduces overfitting
to the training data and makes units smoother. This is achieved by adding an
extra term (the penalty function 𝑃 (i), i being the vector to regularize, typically
the gradients of the weight matrix) to the gradient (before momentum and before
applying the gradients to the weights):

∇W = ∇W − 𝑃 (∇W) (2.55)

The penalty function is generally chosen to penalize large weights. There are
several possible penalty functions, L1 and L2 penalty functions being the most
used ones:

𝐿1(i) = 𝜆 * |i| (2.56)
𝐿2(i) = 𝜆 * i (2.57)

L1 regularization is sometimes preferred for images since it may result in more
localized features, while L2 regularization is often used by default in other cases.
These functions are generally parametrized using a weight cost (𝜆). Values for 𝜆
are generally ranging from 1𝑒−2 to 1𝑒−5. It is also possible to use both L1 and
L2 regularization techniques at the same time. Although it is rarely done, weight
decay can also be applied on the gradients of the biases.
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In practice, there are three ways to apply gradient descent on a network:

1. Stochastic (or Online) Gradient Descent. The gradients are computed for a
single example and directly applied to the weights

2. Batch Gradient Descent: The gradients are computed for the complete data
set and only then applied to the weights

3. Mini-Batch Gradient Descent: The gradients are computed for a small subset
of size 𝐵 before being applied to the weights.

The same three options are available for CD training. In practice, mini-batch
training is generally preferred over the other two versions. Unless the error man-
ifold of the model is very smooth, which is rarely the case (there are often a lot
of local minima), Mini-Batch and Stochastic Gradient Descent perform signifi-
cantly better than Batch Gradient Descent. It is also generally faster to converge,
since the weights are updated much more often. Moreover, mini-batch has several
advantages over stochastic gradient descent. First, it allows the gradients to be
smoothed, avoiding issues with very large outliers. It is also much faster, allowing
vectorization of the gradient computation.

Algorithm 2.2 Mini-batch CD-k algorithm, one epoch
for all mini batch 𝑏 ∈ training set do

for all image x ∈ 𝑏 do
v0 = x
h0 = 𝑝(h|v0)
h

′0 = 𝑆(h0)
for 𝑖← 1, 𝐾 do

v𝑘 = 𝑝(v|h′𝑘−1)
h𝑘 = 𝑝(h|v𝑘)
h

′𝑘 = 𝑆(h𝑘)
end for
W𝑝𝑜𝑠 +

= v0 ⊗ h0

W𝑛𝑒𝑔 +
= v𝐾 ⊗ h𝐾

end for
∇W = 𝜖

𝐵
(W𝑝𝑜𝑠 −W𝑛𝑒𝑔)

∇b = 𝜖
𝐵
(v0 − v𝐾)

∇c = 𝜖
𝐵
(h0 − h𝐾)

W = W +∇W
b = b+∇b
c = c+∇c

end for

For mini-batch gradient descent, the entire data set is cut into small mini-batches
of size 𝐵 (generally ranging from 20 to 300 samples, depending on the data set).
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The gradients are then computed on the complete mini-batch before being ap-
plied to the weights. The algorithm remains mostly the same, except that all the
activations and gradients are computed on each sample of the mini-batch before
being applied to the weights. Before being added to the weights, the sum of the
gradients must be divided by the size of the mini-batch to avoid the update being
dependent on the mini-batch size. Algorithm 2.2 describes the procedure in detail.

For the sake of consistency between different descent techniques, in this thesis, an
epoch is considered as one training pass through the complete data set. This means
that several updates to the weights are made during one epoch. One iteration is
one update of the weights. On the other hand, some other research are describing
an epoch as one update to the weights.

2.4.3.1 Sparsity regularization

Generally, hidden units that are rarely active are more useful than those that
are active often. Moreover, sparse units are easier to interpret and are generally
representing better features when the network is not meant to be fine-tuned. By
default, binary hidden units have a tendency of being active about half of the time.

Sparsity of the binary hidden units can be enforced by setting a target 𝑝 for the
activation probability of each hidden unit. By using an additional penalty term,
the actual probability 𝑞 can be encouraged to be close to 𝑝. The standard way
to compute this penalty term comes from (Nair and G. E. Hinton, 2009). An
exponentially decaying average is used to estimate the actual probability of being
active for each unit:

𝑞𝑛𝑒𝑤 = 𝜅𝑞𝑜𝑙𝑑 + (1− 𝜅)𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (2.58)

The exponential decay is controlled with 𝜅, it is called the sparsity decay rate.
When trained with mini-batch CD, 𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the mean activation probability of
the given hidden unit for the last mini-batch. Using the cross-entropy between the
desired sparsity and the actual sparsity, the penalty 𝑧 for each unit can be easily
derived for binary units:

𝑧 = 𝜔 * (𝑞 − 𝑝) (2.59)

The derivative is scaled by 𝜔 for both the biases and the weights. This parameter
is representing the learning rate of the sparsity, also called the sparsity cost. The
decay rate is generally set to 0.9 and the sparsity cost must be chosen so that
the average sparsity is leaning towards 𝑝 while not interfering too much with the
main learning objective. It is important that the penalty vector 𝑧 is applied to the
weight gradients and the biases gradients. If applied to only one of them, the other
will compete in the opposite direction. It is also possible to use a global sparsity
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Figure 2.5: Impact of different learning rates on Contrastive Divergence training.
This is for a subset of the MNIST data set.

target. However, this generally results in worse weights than using a target for
each hidden unit.

While not its primary objective, this regularization method has also the advantage
that units that are almost dead (with very low activation probability) will be
revived so that their probability will be close to 𝑝. This may avoid having too
many dead units.

2.4.4 Monitoring the learning progress

Since CD trains an RBM to reconstruct its input, the most obvious and simplest
way to monitor the learning of an RBM is to compute the reconstruction error
over the data set. This is a good metric if the RBM is especially trained for
reconstruction. However, if the model is trained for later classification in a DBN
or to extract features for another network, it rarely is an adequate metric. Also,
when the objective is to use an RBM to model the probability distribution of the
input, this is an inadequate metric. In that case, approximating the likelihood
is generally performed (see Section 2.4.5). For instance, Figure 2.5 shows the
evolution of the reconstruction error of an RBM over time with different learning
rates. Generally, a higher learning rate will lead to a faster convergence of the
reconstruction error. However, depending on the final objective, a large learning
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Figure 2.6: Impact of different sparsity targets on Contrastive Divergence training,
with the same learning rate. This is for a subset of the MNIST data set. When
the target is too small, the convergence of the reconstruction error is impeded.

rate is not necessarily a good idea. Indeed, a too high learning rate may also cause
the learning to diverge or the network to overfit.

This technique can also be used to observe the impact of sparsity regularization
during the training of an RBM. Figure 2.6 shows the reconstruction error rate
during training with different sparsity target values. This was generated from a
small network with 200 hidden units. Once the sparsity target is too small, the
training does not converge to a small reconstruction error rate because there are
not enough activated hidden units to compute a good representation of the data.

When the RBM is used to extract features or layers of features (see Section 2.5)
for classification, it is generally possible to test the efficiency of these features
by obtaining the final classification score. However, it generally takes a lot of
time to perform the full classification training and testing, and measures that are
obtainable without further training are generally preferred. Indeed, a measure of
the quality during pretraining itself is preferable. This is the main reason why the
reconstruction error rate is still often used, at least to verify that the network is
learning correctly.

When the data has spatial or temporal structure, i.e. images or speech sam-
ples, visually displaying the weights can be very informative. If the weights look
structured, it may be a good information about what the network has learned.
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Figure 2.7: Visual representation of the features learned by an RBM on the MNIST
data set.

Figure 2.7 shows the features learned by an RBM when trained on the MNIST
data set (LeCun, Cortes, and Burges, 1998). It can clearly be seen that some
filters have learned to detect single digits.

The basic idea for drawing filters is to scale the values of the weights in the grayscale
range (from 0 to 255) and displaying these values. For fully-connected layers, each
hidden unit is connected to every input unit and therefore can be represented
as an image of the same size as the input. For convolutional models, each filter
is represented as a grayscale image of the kernel size. When the input is a color
image, there are generally three input channels and therefore the number of kernels
is also multiplied by three. With that, the kernels can also be represented in color
by drawing an image with all three channels for each filter. When the model has
several layers, it is more difficult to display the weights of the upper layers. One
solution is to take the training image that has the highest activation on each filter,
but this does not tell anything about why this image acts strongly. One other way
is to use another convolutional network to project the activation back in the input
pixel space (Matthew D. Zeiler and Fergus, 2014). It is also possible to perform
a linear combination of the weights between layers to obtain a good visualization
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Figure 2.8: Graphical representation of the Persistent Contrastive Divergence Al-
gorithm. Only the initialization of v0 differs from CD. An iteration is one update
of the weights.

(Erhan, Bengio, A. Courville, and Vincent, 2009).

Drawing the shape of the filters is the most used visual tool for monitoring RBM,
but there are other ways to visually debug the training of an RBM, with his-
tograms, probabilities and even three-dimensional filters (Yosinski and Lipson,
2012).

2.4.5 Persistent Contrastive Divergence

While CD-k is fast and is a reasonable approximation to the likelihood gradient and
is able to substantially reduce the reconstruction error over the training epochs,
it is still quite different from the likelihood gradient. To alleviate these issues,
Persistent Contrastive Divergence (PCD) has been designed (Tieleman, 2008;
Tieleman and G. E. Hinton, 2009). In this algorithm, instead of starting the Gibbs
sampling at a data point at each parameter update, "persistent" Markov chain are
kept and are not reset when the parameters are updated. This is presented in
Figure 2.8. If the learning rate is small enough, this may produce better models
than simply using CD, by improving the mixing rate of the Gibbs chains. Like
CD, PCD can be performed with different numbers of Gibbs steps.

This algorithm can be implemented in many ways, for instance by resetting at
interval the Markov chains or by randomly choosing Markov chains to reset. How-
ever, in practice, the Markov chains are never reset, there are as many Markov
chains as there are samples in a mini-batch and a full Gibbs sampling step is done
on each Markov chain for each parameter update. For this reason, PCD is rarely
done without mini-batch training. The CD algorithm (see Section 2.4.3) can eas-
ily be transformed into PCD when using mini-batch. The only difference being
that the visible units are only set to the value data points at the beginning of the
training and not before each Gibbs sampling step. Moreover, the learning rate is
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typically significantly smaller than for regular CD training.

PCD generally outperforms CD when the objective is to build a density model of
the input data. In that case, the algorithm is closer to the optimal algorithm for
modeling the probability distribution of the input. However, it is less accurate in
generating reconstructions of the input. Therefore, the reconstruction error rate
is not a good information on how the network is training. Since computing the
exact likelihood is computationally intractable, it is necessary to use a proxy to
the likelihood. The simplest method is to use the Pseudo-Likelihood (PL) proxy.
For an RBM with binary units, assuming that all bits are independent, it can be
computed as in the following:

𝑃𝐿(x) =
𝑀∏︁
𝑖=1

𝑝(x𝑖|x−𝑖) (2.60)

𝑙𝑜𝑔𝑃𝐿(x) =
𝑀∑︁
𝑖=1

𝑙𝑜𝑔𝑝(x𝑖|x−𝑖) (2.61)

In this formulas, x−𝑖 represents the set of all bits inside x except for the bit
𝑖. Therefore, 𝑙𝑜𝑔𝑃𝐿(x) is a summation of the log probabilities of each bit of
the hidden representation, conditioned by the state of all other bits. This is an
expensive computation for the training most RBM.

There exist several faster approximations to the PL. The second approach is to
estimate the normalization constant 𝑍 of the model. Once it is known, the like-
lihood can be computed in a straightforward manner (See Equation 2.12). The
most used technique to approximate the normalization constant is Annealed Im-
portance Sampling (AIS) (Neal, 2001; Salakhutdinov, 2009). AIS estimates the
normalization constant of a model by computing the ratio between the normaliza-
tion constants of two distributions. By choosing a base distribution from which
the exact normalization constant can be computed (for instance, an RBM with
zero-weights and zero-biases), the normalization constant of the target RBM can
be estimated.

2.4.6 Other types of units

While binary hidden units are very efficient on binary-valued input data, it is not
always possible to binarize data sets. Moreover, they sometimes prove slow to
converge or are overfitting early in the training. For these reasons, several other
types of units were developed for RBM.

Figure 2.9 shows the aspect of some of the activation functions used in this Section.
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Figure 2.9: Visual aspect of the main activation functions used for an RBM. On
the left, the logistic sigmoid and identity functions. On the right, the sofplus and
rectifier functions.

2.4.6.1 Softmax hidden unit

The softmax function is a generalization of the logistic function. It is typically
used at the last layer of artificial neural networks for classification, where only one
label is valid for each given input. These networks can then be trained using a
variant of logistic loss regression. This was also adopted in RBM. Softmax units
are a special type of units whose states are mutually constrained so that exactly
one of the states has the value 1, while all others have the value 0. The state of a
softmax unit is computed using the softmax function:

i = c+ vW (2.62)

h = 𝑝(h = 1|v) = 𝑒i𝑗∑︀𝑁
𝑖=1 𝑒

i𝑗
(2.63)

In practice, this formula proves highly numerically instable. Therefore, a more
stable version is generally used:

i = c+ vW (2.64)

𝑚 =
𝑁

max
𝑗=1

i𝑗 (2.65)

h = 𝑝(h = 1|𝑣) = 𝑒i−𝑚∑︀𝑁
𝑗=1 𝑒

i𝑗−𝑚
(2.66)

The hidden units are sampled so that only one hidden unit is sampled to one while
the other units are all sampled to zero:
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h′
𝑗 =

{︃
1 if h𝑗 == max𝑁𝑖=1 h𝑖

0 otherwise
(2.67)

In practice, this type of layer is only rarely pretrained. This layer is generally only
used when the network is designed for classification. Moreover, since it is the last
layer of the network, it is going to receive direct gradients from the classification
errors during fine-tuning. For this reason, pretraining the layer would not result
in any significant advantage for fine-tuning.

2.4.6.2 Gaussian unit

As their name implies, binary visible units are best used when the input data is
binary. However, it is not always possible to binarize the input data. In such
cases, Gaussian visible units are better suited to handle real-valued input data.
They are linear units with independent Gaussian noise. The energy functions of
such an RBM can be computed as follows:

𝐸(v,h) =
𝑀∑︁
𝑖=1

(v𝑖 − b𝑖)
2

2𝜎2
𝑖

−
𝑁∑︁
𝑗=1

𝑐𝑗h𝑗 −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

v𝑖

𝜎𝑖

h𝑗W𝑖,𝑗 (2.68)

𝐹 (v) =
𝑀∑︁
𝑖=1

(𝑐𝑖 − v𝑖)
2

2𝜎2
𝑖

−
𝑁∑︁
𝑗=1

log(1 + 𝑒𝑥𝑝(
𝑁∑︁
𝑖=1

v𝑖

𝜎𝑖

W𝑖,𝑗 + b𝑗)) (2.69)

From this, the probability function for a visible unit becomes:

𝑝𝑖 = 𝑝(𝑣𝑖|h) = 𝑁(𝑏𝑖 + 𝜎𝑖

𝑛∑︁
𝑗=1

ℎ𝑗𝑊𝑖,𝑗, 𝜎
2
𝑖 ) (2.70)

It is also necessary to divide the value of the visible units by their variance when
computing the hidden units activation probabilities.

While it is possible to learn the variance of the noise for each visible unit, this is
difficult with CD. In practice, Gaussian visible units are used on data that has been
normalized to have zero mean and unit variance. This allows the reconstruction
to be noise-free:

v = 𝑝(v = 1|h) = b+W * h (2.71)
v′ = v +𝑁(0, 1) (2.72)

And it simplifies the energy function:
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𝐸(v,h) =
𝑀∑︁
𝑖=1

(v𝑖 − b𝑖)
2

2
+

𝑁∑︁
𝑗=1

c𝑗h𝑗 −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

v𝑖h𝑗W𝑖,𝑗 (2.73)

A Gaussian-Binary RBM (also called a Gaussian-Bernoulli RBM) needs a learning
rate that is one or two orders of magnitude lower than a Binary-Binary RBM.
Moreover, the learning needs more epochs to converge and is less stable.

Gaussian hidden units are also possible, but have very few usages in practice.
Indeed, they are very complicated and slow to learn and require extensive opti-
mization to have a good model. Moreover, Gaussian hidden units do not offer sig-
nificant improvement when compared with binary units or Rectified Linear Units
(see Section 2.4.6.3). When both hidden and visible units are Gaussian, the energy
of the RBM becomes:

𝐸(v,h) =
𝑀∑︁
𝑖=1

(v𝑖 − b𝑖)
2

2
+

𝑁∑︁
𝑗=1

(h𝑗 − c𝑗)
2

2

−
𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

v𝑖h𝑗W𝑖,𝑗

(2.74)

2.4.6.3 Rectified Linear Unit

Rectified Linear Units (ReLUs) have demonstrated to be able to learn better fea-
tures than binary units (Nair and G. E. Hinton, 2010). Moreover, they are capable
of preserving more information about the input distribution. Since their introduc-
tion for RBM, they have been widely adopted for other deep learning models
(Matthew D. Zeiler, Ranzato, et al., 2013; G. E. Dahl, Sainath, and G. E. Hinton,
2013; Krizhevsky, Sutskever, and G. E. Hinton, 2012) and have achieved very good
performance.

Originally, the activation function of Rectified Linear Units has been defined using
the softplus function:

𝑓(𝑥) = 𝑙𝑛(1 + 𝑒𝑥) (2.75)

In practice, it is generally approximated as the max function (or hard max):

𝑓(𝑥) = 𝑚𝑎𝑥(𝑥, 0) =

{︃
𝑥 : if 𝑥 ≥ 0

0 : if 𝑥 < 0
(2.76)
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The difference between the softplus function and the approximation can be ob-
served in Figure 2.9. When using binary units, with the logistic sigmoid function,
the gradient vanishes as we increase the input 𝑥. This is not the case with ReLU
function. Moreover, when using the hard max approximation, the activation prob-
abilities are sparse after passing through the ReLU function. Finally, this function
is much faster to compute than the sigmoid function which requires exponentiation
and division.

There exist several variants of ReLU functions (B. Xu et al., 2015). The main
problem with ReLU is that a unit can irreversibly "die" (be turned off). If a large
gradient causes the neuron never to activate again, the gradients for this neuron
will always be zero from this point, causing the neuron to "die". To alleviate this
issue, Leaky ReLUs were introduced with a small change to the function:

𝑓(𝑥) = 𝑚𝑎𝑥(𝑥, 0) =

{︃
𝑥 : if 𝑥 ≥ 0

𝑎𝑥 : if 𝑥 < 0
(2.77)

where 𝑎 is set to a small constant in [0, 1]. In some cases, this produces better
results than standard ReLU by not letting die some units. In order to avoid
having to find a value for 𝑎, it is possible to learn this value during training,
in a model called Parametric ReLU (He et al., 2015). Another improvement
for Leaky ReLU is to randomize the 𝑎 constant during training, using a uniform
distribution between 𝑙 and 𝑢, 1

𝑈𝑛𝑖𝑓(𝑙,𝑢)
(called Randomized Leaky ReLU). The most

used distribution for this model is 𝑈𝑛𝑖𝑓(3, 8) (𝑙 = 3, 𝑢 = 8) (He et al., 2015).
During testing, 𝑎 is set to 2

𝑙+𝑢
. In practice, a random 𝑎 seems the best alternative,

by avoiding dying neurons and by improving control over overfitting.

In an RBM model, ReLU activation probabilities and samples can be calculated
as follows:

i = b+ v *W (2.78)
h = 𝑝(h = 1|v) = max(i, 0) (2.79)

h′ = max(i+𝑁(0, 𝜎(i)), 0) (2.80)

Sometimes the variance of the Normal distribution in Equation 2.80 is simply set
to 1 directly.

In some cases, ReLU can also be capped to a maximum value of 𝑈 (called RELU-
U here) (Krizhevsky, 2010). This encourages the RBM model to learn sparse
features earlier during training and is computationally more efficient than other
sparsity regularization methods. RELU-U units are computed in the following
manner:
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(a) Abstract representation of a three-
layer Deep Belief Network. Each layer
is a Restricted Boltzmann Machine.

(b) Unit-level view of a three-layer Deep
Belief Network

Figure 2.10: Visual representation of a Deep Belief Network

i = b+ v *W (2.81)
h = 𝑝(h = 1|v) = min(max(i, 0), 𝑈) (2.82)

𝜎(i) =

{︃
1 : if 𝑥 = 0 or 𝑥 = 𝑈

0 : if 0 < 𝑥 < 𝑈
(2.83)

h′ = min(max(i+𝑁(0, 𝜎(i)), 0), 𝑈) (2.84)

ReLU-1 could typically be used in the first layer of a network to avoid a large
network simply memoizing the inputs. The units of the following layers could
then be capped to higher values, such as ReLU-6, to enforce sparsity.

Although the ReLU function could theoretically be used in an RBM for visible
units as well, it is generally not the case. Indeed, Gaussian visible units are a
better representations for standard input patterns than ReLU. Therefore, a good
model is to use Gaussian visible units for inputs that cannot be binarized and
RELU hidden units.

2.5 Deep Belief Network

While an RBM may be able to learn features from simple input data, it is limited
in what it can represent. For this reason, they are generally stacked together in
order to form a higher level network. A DBN is a generative model consisting of
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Algorithm 2.3 Deep Belief Network training algorithm
S = samples from training set
I = S
for all layer 𝑙 ∈ network do

train 𝑙 with I
save weights of 𝑙
I = features of 𝑙 computed from I

end for
if fine tuning then

L = labels from training set
Fine-tune network with I and L

end if

several layers. Each layer of a DBN is an RBM. Although this is not covered in this
thesis, it is also possible to stack any kind of auto-encoder as the basic block of the
DBN. Figure 2.10 presents a DBN with three layers. This structure was proposed
in (G. E. Hinton and Salakhutdinov, 2006) with an efficient learning algorithm.
A DBN is first pretrained, layer by layer, using CD on each RBM layer. This is
a fast procedure since each layer is trained one after another, freezing the weights
after the training of a given layer. This procedure is detailed in Algorithm 2.3.

The idea behind this greedy layer-wise pretraining algorithm is that each model
in the sequence of layers is learning from a different representation of the input.
Each model performs a non-linear transformation and produces the input of the
next layer. If the algorithm makes changes to the weights of the higher level, it is
guaranteed to improve the generative model (G. E. Hinton, Osindero, and Teh,
2006). This guarantee only holds if the general Boltzmann Machine algorithm
is used, which is not the case in practice where CD is used. However, adding
extra layers is still guaranteed to improve imperfect models if each layer is learned
long enough. This does help the following supervised fine-tuning procedure by
restricting the parameters to particular regions in the model space. As for feature
extraction, a DBN can learn features that are relevant to the input in that they
are able to reconstruct the input using these features.

If the network is trained for classification, once each layer has been pretrained, it
can be trained (fine-tuned) similarly to standard neural networks, using a back-
propagation algorithm such as SGD or CG. In that case, it works exactly in the
same way as a Deep Neural Network. The unsupervised pretraining acts as an ini-
tialization of the weights that helps the network generalize and prevents standard
backpropagation issues such as being stuck in a local minima or the vanishing gra-
dient problem. This better initialization allows for fast convergence and generally
requires less refinements of the fine-tuning step. This is the first contribution of
the restarted Deep Learning models. This model achieved state of the art for the
MNIST database (LeCun, Cortes, and Burges, 1998). It is also possible to train
the last layer, with softmax units, directly with CD by integrating the labels as
inputs of the last layer and not perform any backpropagation. While this produces
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Figure 2.11: Visual representation of a Convolutional Restricted Boltzmann Ma-
chine.

good results, this does not perform as well as fine tuning the model since only the
last layer is adapted.

2.6 Convolutional Restricted Boltzman Machine

While RBM and DBN models have proved very successful in solving several prob-
lems, they are not well-adapted for natural images modeling. Indeed, RBMs are
known to have issues in capturing local dependencies between pixels (Taylor and
G. E. Hinton, 2009). Moreover, since they are fully-connected models, they are
not able to scale to large input samples, such as realistically-sized natural images.
This comes from two reasons. First, realistic natural images are often composed of
a very large number of pixels, making training very slow. For large images, RBM
becomes computationally intractable. Moreover, objects being able to appear any-
where inside an image, translation invariance becomes an important characteristic
of a training model ( max pooling also helps in that matter). RBMs share the
same limitations as standard fully-connected neural networks and do not cope well
with local translations in the image, unless various transformations are performed
(Sohn and H. Lee, 2012). For these reasons, translation invariance was integrated
into RBM using convolution as a solution, resulting in the CRBM model (H. Lee,
Grosse, et al., 2009). While RBM is the model equivalent to a fully-connected
network, the CRBM is the equivalent of a CNN. The model learns feature de-
tectors shared among all locations of an image, following previous work (LeCun,

Baptiste Wicht 43



2.6. Convolutional RBM CHAPTER 2. FUNDAMENTALS

Boser, et al., 1989; Grosse, Kwong, and Ng, 2007). These feature detectors will
learn to detect local features occurring at any position in the image. This has
the advantage that the features are invariant to translations of the input image
and that the model is able to learn local dependencies between pixels, resulting in
much better performance for natural images. Moreover, since each output neuron
is only connected to a subset of the input, there are much less weights to learn
and the network is easily able to scale to large images.

A CRBM remains very similar to an RBM but the activation of units is done using
convolution rather than multiplication and weights are shared for all locations of
the image. As shown in Figure 2.11, a CRBM is made of two layers, one visible layer
V and one hidden layer H. The input layer (or visible) V is a matrix of 𝐶×𝑁1

𝑉×𝑁2
𝑉

visible units. 𝐶 is the number of channels in the input, typically the number of
color channels in color images for the first layer of the network. When CRBMs
are stacked together, the following layers have a number of channels corresponding
to the number of filters of the previous layer. The hidden layer H consists of 𝐾
groups (or bases) and each group is made of 𝑁1

𝐻 × 𝑁2
𝐻 hidden units (for a total

of 𝐾𝑁1
𝐻𝑁

2
𝐻 hidden units). Each of the 𝐾 bases is associated with a 𝑁1

𝑊 × 𝑁2
𝑊

convolutional filter (by convolutional properties 𝑁𝑛
𝑊 , 𝑁𝑛

𝑉 − 𝑁𝑛
𝐻 + 1). Here, we

consider the basic case of convolution with unit-stride and no zero-padding, but
the model can easily be extended to support non-unit strides and zero-padding.
Since the matrix of weights W is not shared between channels, there are K groups
for each channel and the filters for each channel are independent, leading to a
total number of weights of 𝐶𝐾𝑁1

𝑊𝑁2
𝑊 . Each hidden base has a bias b𝑘 and each

channel has a bias c𝑐. Several models for the biases have been used, for instance
(Krizhevsky, 2010) does not share biases between filters (one bias per position in
the filter).

While CRBMs are generally used for two-dimensional inputs, it is also completely
possible to adapt them for one-dimensional input such as speech (H. Lee, Pham,
et al., 2009). In this case, all the structures have one less dimension and the
one-dimensional convolution is used to compute the activation probabilities of the
units. The case of color images is easily handled by a CRBM. In this case, there is a
set of weights for each input channel and the results of the convolution is averaged
over each channel to generate the hidden activation probabilities.The exact same
procedure is used when CRBMs are stacked since the second layer will obtain a
𝐾-dimensional input from the previous layer. While rarely done in practice, it is
also possible to not average over the input channels. In that particular case, there
will be 𝐾𝐶 output feature maps. Moreover, the model can also be adapted to use
higher levels of convolution, such as a real three-dimensional convolution (e.g. a
spatial convolution over volumes).

Using the valid convolution, the energy function of a network with binary visible
and hidden units can be defined as:
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𝐸(v,h) =−
𝐶∑︁
𝑐=1

𝐾∑︁
𝑘=1

𝑁1
𝐻∑︁

𝑖=1

𝑁2
𝐻∑︁

𝑗=1

(Tr(h𝑘
𝑖,𝑗

𝑇
(W̃k

c ∙𝑣 v𝑐)𝑖,𝑗))

−
𝐾∑︁
𝑘=1

𝑁1
𝐻∑︁

𝑖=1

𝑁2
𝐻∑︁

𝑗=1

(b𝑘h
𝑘
𝑖,𝑗)

−
𝐶∑︁
𝑐=1

𝑁1
𝑉∑︁

𝑖=1

𝑁2
𝑉∑︁

𝑗=1

(c𝑐v𝑐,𝑖,𝑗)

(2.85)

Using the valid convolution for the hidden units and the full convolution for the
visible units, the activation functions for binary hidden units can be defined as
follows:

h𝑘
𝑖,𝑗 = 𝑝(h𝑘

𝑖,𝑗 = 1|v) = 𝜎((
𝐶∑︁
𝑐=1

W̃𝑘
𝑐 ∙𝑣 v𝑐)𝑖,𝑗 + b𝑘) (2.86)

v𝑐
𝑖,𝑗 = 𝑝(v𝑐

𝑖,𝑗 = 1|h) = 𝜎((
𝐾∑︁
𝑘=1

W𝑘
𝑐 ∙𝑓 h𝑘)𝑖,𝑗 + c𝑐) (2.87)

The sampling function remains the same as for the RBM. It is also straightforward
to adapt the formulas for other types of units since they all receive the same input.

A CRBM is trained similarly to an RBM, with an adapted version of the formulas
to compute the gradients of the positive and negative phases (See Algorithm 2.1):

W𝑝𝑜𝑠
𝑐,𝑘 = v0

𝑐 ∙𝑣 h̃0
𝑘 (2.88)

W𝑛𝑒𝑔
𝑐,𝑘 = v1

𝑐 ∙𝑣 h̃1
𝑘 (2.89)

2.6.1 Convolutional Sparsity regularization

Although sparsity is important for RBM (see Section 2.4.3.1), it becomes much
more important for CRBM. Indeed, the model is highly overcomplete, because
the size of the output representation is in fact larger than the size of the input
representation. Unless the size of the filters is very large, which does not generally
happen in practice, the model is overcomplete almost by a factor 𝐾. In practice,
overcomplete models have a tendency of learning trivial solutions, such as the
identity function, instead of learning generic feature detectors. While this can
achieve a good reconstruction error rate, this kind of feature is not useful for
passing to another classifier and is highly tied to the training set. The most
common solution to avoid this issue is to force hidden units to be rarely active,
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Figure 2.12: Visual representation of Probabilistic Max Pooling applied to a Con-
volutional Restricted Boltzmann Machine.

therefore a given stimulus in the input would only activate a small fraction of the
hidden units (Olshausen and Field, 1996). Another solution is to use ReLU units
that are by themselves sparser than binary hidden units (See Section 2.4.6.3).

The most common approach for sparsity regularization in a CRBM is slightly
different from the general approach for an RBM (H. Lee, Ekanadham, and Ng,
2008). A penalty is only applied to the hidden biases:

b𝑘 = s𝑘 − 𝑝 (2.90)
z𝑘 = b𝑘 * 𝜔 (2.91)

Where 𝑝 is a target sparsity and 𝜔 is a sparsity learning rate. It is important that
both the learning rate of the weights and the learning rate of the sparsity are tuned
accordingly so that both reconstruction and sparsity can be learned effectively.

2.6.2 Probabilistic Max Pooling

Generally, higher levels of a neural network encode information about progres-
sively larger input regions. CNNs use pooling layers to shrink the representation
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by a given factor (Y.-L. Boureau, Ponce, and LeCun, 2010). Specifically, max
pooling computes the maximum activation of all the units in a given region of the
feature map and Average Pooling computes the average activation of the region.
In practice, pooling is done over small regions.

The aforementioned pooling operators are intended for feed-forward networks.
CRBM is, by nature, a generative model, supporting both top-down and bottom-
up inference. Using standard pooling layers would prevent top-down inference.
Therefore, the Probabilistic Max Pooling (PMP) operator was designed so that
inference is based on a max-pooling behaviour (H. Lee, Grosse, et al., 2009). This
operator shrinks each dimension of the representation by a factor 𝐶. Using this
operator improves translation-invariance, reduces the computational cost (by re-
ducing the size of inputs for the following layers) and also reduces the size of the
output feature maps, which may be critical for feature extraction.

A CRBM with PMP is equivalent to a CRBM but has a third layer, the pooling
layer P, consisting of 𝐾 groups of 𝑁1

𝑃 × 𝑁2
𝑃 units (𝑁𝑛

𝑃 , 𝑁𝑛
𝐻/𝐶). Figure 2.12

presents a graphical representation of a CRBM using Probabilistic Max Pooling.
The energy function of this model can be defined as follows:

𝐸(v,h) =−
𝐶∑︁
𝑐=1

𝐾∑︁
𝑘=1

𝑁1
𝐻∑︁

𝑖=1

𝑁2
𝐻∑︁

𝑗=1

(h𝑘
𝑖,𝑗(W̃

𝑘
𝑐 ∙𝑣 v𝑐)𝑖,𝑗)

−
𝐾∑︁
𝑘=1

𝑁1
𝐻∑︁

𝑖=

𝑁2
𝐻∑︁

𝑗=1

(b𝑘h
𝑘
𝑖,𝑗)

−
𝐶∑︁
𝑐=1

𝑁1
𝑉∑︁

𝑖=

𝑁2
𝑉∑︁

𝑗=1

(c𝑐v𝑐,𝑖,𝑗)

(2.92)

For binary visible and hidden units, the activation probabilities of each unit can
be computed using the following formulas:

v = 𝑝(v𝑐,𝑖,𝑗 = 1|h) = 𝜎(c𝑐 +
𝐾∑︁
𝑘

(W𝑘
𝑐 ∙𝑓 h𝑘)𝑖,𝑗) (2.93)

𝐵𝛼 , (𝑖, 𝑗) : ℎ𝑖,𝑗belongs to block 𝛼 (2.94)

I(ℎ𝑘
𝑖,𝑗) , b𝑘 + (W̃𝑘 ∙𝑣 v)𝑖,𝑗 (2.95)

h = 𝑝(h𝑘
𝑖,𝑗 = 1|v) =

𝑒𝑥𝑝(I(ℎ𝑘
𝑖𝑗))

1 +
∑︀∈𝛽𝛼

𝑖′,𝑗′ 𝑒𝑥𝑝(I(ℎ
𝑘
𝑖′,𝑗′))

(2.96)

P = 𝑝(p𝑘
𝛼 = 0|v) = 1

1 +
∑︀∈𝛽𝛼

𝑖′,𝑗′ 𝑒𝑥𝑝(I(ℎ
𝑘
𝑖′,𝑗′))

(2.97)

The detection units in a block 𝐵𝛼 are connected to the pooling unit 𝑝𝛼 in a sin-
gle potential. This has the effect that only at most one detection unit may be
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activated. The pooling unit is activated only if a detection unit of its group is
activated. This means that each block can take on 𝐶2 + 1 different values.

This special CRBM is especially meant to work with binary hidden units since the
pooling units are meant to be binary as well. On the other hand, the visible units
can be adapted to other units such as Gaussian units.

2.7 Convolutional Deep Belief Network

Such as the DBN is a network where RBM are stacked, the Convolutional Deep
Belief Network (CDBN) model (H. Lee, Grosse, et al., 2009) is a network composed
of several CRBM one after another. It is generally pretrained by greedily training
each CRBM in an unsupervised manner to initialize the weights of the networks.
It can then be fine-tuned or used for feature extraction. In practice, this model is
more often used solely for feature extraction rather than for initializing the weights
of a neural network as was the original purpose of DBN. It is nevertheless possible
to fine-tune it in the same way as a CNN (Krizhevsky, 2010). It is typical to use
either Probabilistic Max Pooling (PMP) or regular max pooling layers between
the layers to improve the robustness of the learned features and control overfitting.
Using standard max pooling layers between CRBM has the disadvantage of losing
the ability of doing both bottom-up and top-down inference. However, it has the
advantage of being easy to fine-tune using standard backpropagation algorithms.

Figure 2.13 shows the features learned by a three-layer CDBN with PMP (H.
Lee, Grosse, et al., 2009) on images from the Caltech-101 data set. It can clearly
be observed that the first layer learned filters for oriented edges while the second
one learned object parts. Finally, the last layer acts as a detector of higher-level
features, almost complete objects.

2.8 Variants of Restricted Boltzmann Machine

The standard RBM and the CRBM are the most commonly used types of RBM.
However, several other variations of RBM have been developed. Most models were
developed to solve a task that is difficult to solve with the RBM. The principal goal
is to perform better than the Gaussian-Bernoulli RBM for real-valued inputs, such
as modeling natural images or time series. These models are less general-purpose
than the standard RBM and as such have less applicability. However, they are
typically exhibiting better performance for very specific tasks. In practice, with
the exception of the Deep Boltzmann Machine (See Section 2.8.5), these models
have been much less used than the RBM or CRBM models, which are more simple
and more generic models.

This Section briefly describes some of the popular variants of RBM and their
possible applications. Many more variations were developed, however this Section
is not meant to be exhaustive.
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Figure 2.13: Features learned by a three-level CDBN with Probabilistic Max Pool-
ing on two different Caltech 101 categories. From (H. Lee, Grosse, et al., 2009).

2.8.1 Mean-Covariance RBM

A mean-covariance RBM (mcRBM) (Ranzato and G. E. Hinton, 2010; Ranzato,
Krizhevsky, et al., 2010; G. Dahl et al., 2010) is an alternative to the Gaussian-
Bernoulli RBM to handle real-valued inputs. It is typically used as the first layer
of a DBN. This model has two separate groups of hidden units: the mean units
and the precision units (or covariance units). The mean units are similar to the
units of a Gaussian-Bernoulli RBM. What makes this model interesting is the
precision units. They are enforcing smoothness constraints in the input data.
When a constraint is violated, the precision unit is turned off. At any time, the
set of turned-on precision units specifies a covariance matrix specific to the sample.
When put together, each image is represented using a set of binary latent features
modeling the mean and another set modeling covariance. This model has been
successfully applied to both natural images and acoustic data.

2.8.2 Discriminative RBM

Typically, RBM are used as feature extractors for higher level classifiers or to ini-
tialize the weights of a feed-forward neural network. To achieve classification, the
RBM can be used to model the joint distribution of the inputs 𝑥 and the asso-
ciated classes 𝑦. The model can then be trained using standard CD algorithm.
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However, this will train the model in having a good 𝑝(𝑥, 𝑦) approximation. In-
stead, a Discriminative RBM (DRBM) (Larochelle and Bengio, 2008) changes the
training objective so that it optimizes 𝑝(𝑦|𝑥) instead. Using this new objective,
the DRBM can be trained using CD. Moreover, this model can also be used as
a feature extractor, enforcing the features to be more discriminative than if they
were generated using a standard RBM model.

2.8.3 Temporal RBM

The Temporal RBM (TRBM) (Taylor, G. E. Hinton, and Roweis, 2006; Sutskever
and G. E. Hinton, 2007) is a sequence of RBMs that are arranged so that the
state of the RBM at a given step only depends on the state of the RBM in the
previous timestep. Learning can be achieved using CD, however exact inference is
intractable and so inference is realized using a heuristic approximation. The model
was later extended to the Recurrent Temporal RBM (Sutskever, G. E. Hinton,
and Taylor, 2009). While being very similar to a TRBM, this variant makes exact
inference possible and improves the computation of the gradient. For instance,
these models were able to generate videos of balls bouncing. The TRBM was also
described in similar ways as the Conditional RBM (Taylor and G. E. Hinton,
2009) (Mnih, Larochelle, and G. E. Hinton, 2012).

2.8.4 Spike and Slab RBM

The spike and slab RBM (ssRBM) (A. C. Courville, Bergstra, and Bengio, 2011)
differs from a Gaussian-Bernoulli RBM in that each hidden unit is associated
with a binary spike variable and a real value slab vector of 𝐾 features. Where a
Gaussian-Bernoulli RBM model continuous input with only binary latent variables,
this model uses both binary and real variables to represent the latent features. It
can be trained efficiently using a slightly different version of CD. This model proved
to generate very potent filters on whitened color images and was able to achieve
very good classification results when coupled with logistic regression.

2.8.5 Deep Boltzmann Machine

A DBN (See Section 2.5) is merely a stack of RBM, trained in a layer-by-layer
way and not a multilayer Boltzmann Machine (G. E. Hinton and Salakhutdinov,
2006). A Deep Boltzmann Machine (DBM) (Salakhutdinov and G. E. Hinton,
2009; G. E. Hinton and Salakhutdinov, 2012) has undirected connections between
all layers, contrary to a DBN in which only the connections between the top two
layers are undirected and the other connections are top-to-bottom directed. This
can be seen on Figure 2.14. Contrary to a DBN, the inference can also perform
top-down feedback, after the typical bottom-up pass. This allows the DBM to
better propagate uncertainty.
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Figure 2.14: Three-layer Deep Boltzmann Machine

A DBM is also greedily pretrained layer-by-layer, but in such a way that allows
top-down feedback to be achieved and dispatching more work to the higher levels
of the network by configuring the tied weights. This means that it is not enough to
train each layer as an RBM and then copy the pretrained weights into the network.
For this, there are several techniques (I. Goodfellow, Bengio, and A. Courville,
2016). Once pretrained, its weights can also be used to initialize the weights of
a neural network that can then be fine-tuned using standard techniques. More
interestingly and contrary to DBNs, it can also be generatively fine-tuned and
proved to be more efficient than a DBN in estimating the probability distribution
over the input samples (G. E. Hinton and Salakhutdinov, 2012).
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Chapter 3

Semi-Supervised Training

It’s fine to celebrate success but it is more
important to heed the lessons of failure

Bill Gates
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3.1 Introduction

Semi-Supervised Training generally refers to the case when a neural network that
is to be used for classification is first pretrained, layer-by-layer, using an unsuper-
vised training algorithm. Finally, the network can be trained using a standard
training algorithm, for classification or prediction. In the case of a Deep Belief
Network (DBN), each layer is trained, in turn, using a Restricted Boltzmann Ma-
chine (RBM), with Contrastive Divergence (CD). This is called semi-supervised
since the pretraining is done in an unsupervised manner, while the training it-
self (fine-tuning the network) is done in a, more classical, supervised way. In the
first step, the network is trained to reconstruct the input, potentially using large
quantities of data as no labels are necessary. The network is only able to perform
classification once fine-tuned using labelled training data. This form of training
was introduced by Hinton et al. (G. E. Hinton and Salakhutdinov, 2006). It is
interesting that this is close to human learning since most of what humans learn
is unsupervised, no labels are necessary for recognizing shapes for instance. The
pretraining acts as a good initialization of the network weights. This helps the
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Figure 3.1: Example of an auto-encoder neural network. The network is trained
to reconstruct its input x, targetting to obtain a x̂ output as close as possible to
the input x. The activations of the hidden layer represents the features that the
network tries to learn.

supervised fine-tuning to complete faster and to find better solutions. At the time
of the original publication, this new technique outperformed the state of the art of
Digit Recognition on the MNIST data set (considering only non-convolutional re-
sults without any data augmentation). Since then, the state of the art has evolved
again (Jarrett, Kavukcuoglu, Lecun, et al., 2009; Ciregan, Meier, and Schmid-
huber, 2012), but this result restarted the interest in neural networks and more
specifically in larger and deeper networks, leading to what is now known as Deep
Learning.

This technique is not limited to the RBM model. In practice, it is possible to
pretrain a neural network using other types of auto-encoders to get a good first
initialization of the weights. There exist several types of auto-encoders (Bengio,
2009). Generally, auto-encoders are a special form of Artificial Neural Network
(ANN). Figure 3.1 shows an example of a simple auto-encoder ANN. The most
basic auto-encoder is a network with one hidden layer in between the input and the
output layer that have matching dimensions. The training is not done using labels,
but it is done using the inputs as the expected output. The features generated
by the hidden layer is what is kept once the network is trained. This form of
architecture is sometimes called a mirror architecture since the layers around the
features layers are mirrored versions of each other. Generally, the part of the
network on the right of the features layer is dropped once the network is trained.
Denoising Auto-Encoder (DAE) are trained not directly with the input but with a
noisy (corrupted) version of them, to improve the robustness of the learned features
(Vincent, Larochelle, Bengio, et al., 2008). Moreover, an auto-encoder model can
also be stacked in Stacked Auto-Encoder (SAE) or in Stacked Denoising Auto-
Encoder (SDAE) and convolutional variants have also been developed (Masci et
al., 2011), following the same idea.

This pretraining of neural networks does not perform feature extraction per se.
Indeed, once the network is fine-tuned, the features that are generated by the
intermediate layers are altered to achieve the network goal. Nevertheless, the
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pretraining is performed so that a better representation of the input is generated,
thus performing feature extraction.

Since pretraining seems to help the training of large ANNs, some research ex-
perimented with combined unsupervised and supervised gradients during training
(Zamora-Martinez, Munoz-Almaraz, and Pardo, 2016) with good success. This
is performed by using a loss composed of both the supervised and unsupervised
losses. The training starts with a focus on the unsupervised loss and is getting
more and focuses on the supervised loss.

3.2 Advantages of pretraining

Although the results empirically show that unsupervised pretraining helps the
overall training of deep neural networks for classification, it is not directly clear
why this is the case. Indeed, the objectives of the two phases are not nearly
the same. The first training objective tries to minimize the reconstruction error
of the network. The second tries to minimize its classification error. A lot of
research has be done to explain why this pretraining phase helps the fine-tuning
(Erhan, Bengio, A. Courville, Manzagol, et al., 2010; Erhan, Manzagol, et al.,
2009) (Bengio, Lamblin, et al., 2007; Larochelle, Bengio, et al., 2009).

The basic and reasonable explanation of why it helps is simply that it provides
a good initialization of the weights, mitigating the difficulty of the optimization
problem. Numerous experiments and research were performed to verify and clarify
this basic explanation. The first interesting fact is that the pretraining need not
necessarily been done with RBM and DBN. Indeed, it was shown, empirically,
that training each layer as an auto-encoder or using another form of supervised
pretraining leads to improvements when compared with a deep neural network
that is not pretrained (random initialization of the weights) (Bengio, Lamblin,
et al., 2007). It was shown that carefully pretraining a neural network using a
layer-by-layer training with auto-encoders led to performance very close to that of
the DBN model. When the model is trained as a denoising auto-encoder (Vincent,
Larochelle, Bengio, et al., 2008), it performs at least as well as a DBN (Erhan,
Manzagol, et al., 2009). In each case, the pretrained networks yielded significantly
better performance than the network simply trained in a standard way. Moreover,
the study also showed that pretrained shallow networks are able to compete against
non-pretrained deep networks (Vincent, Larochelle, Bengio, et al., 2008). In
a further experiment, it was shown that initializing the network in a way that
meaningfully represents the input yield a better generalization once the weights
are fine-tuned. More importantly, the higher layers are already initialized with
a representation of higher level, whereas a standard initialization would initialize
each layer independently. Moreover, it was also demonstrated that while very
efficient on data in which the input and the target are highly correlated, pretraining
is not adequate when there is no particular relation between input and output,
which is the case in some regression problems.
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More specifically, experiments have shown that the more layers a network has, the
more interesting pretraining becomes (Erhan, Manzagol, et al., 2009). Pretrain-
ing also helps reducing the variance of different trained models due to the initial
random initialization of the weights (before the pretraining itself). However, it is
interesting to note that the classification error goes up when increasing too much
the number of layers even with pretraining. When experimenting with the size of
the layers, it was shown that while pretraining is very efficient for large layers, it
hurts performance when working with small networks. Since pretraining acts as
a regularizer method, the limited capacity of such networks does not allow fur-
ther restriction. Indeed, regularized is generally more helpful when the number of
parameters is large. This is one of the reasons why small softmax layers are not
pretrained.

The results and conclusions have been confirmed by others (Erhan, Bengio, A.
Courville, Manzagol, et al., 2010) (Larochelle, Bengio, et al., 2009). The important
conclusion is that pretraining a neural network in an unsupervised way before
training it for classification acts as a regularizer and provides, in the end, a better
generalization.

3.3 Advances in Neural Network training

The different studies that are reported in Section 3.2 show that pretraining a deep
neural network greatly improves its training and allows to reach better performance
of the final fine-tuned network. However, since then, several novel neural network
training techniques have been introduced. These advances allowed researchers to
train deeper and deeper networks without pretraining.

The first of these improvements is the use of a new activation function, the Rectifier
function. Units using this new function are called Rectified Linear Units (ReLUs).
Although they were first introduced for Boltzmann machines (Nair and G. E.
Hinton, 2010), ReLUs have proven an excellent activation function for general
ANN training. The function is very simple:

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (3.1)

These units have many advantages over the logistic sigmoid or the hyperbolic
tangent activation functions. First, and probably foremost, they are not exposed
to the vanishing gradient problem (Hochreiter, 1991) and their gradient cannot
grow too high. Moreover, since they are inherently sparse, it is not necessary
to apply a sparsity regularization method to the training (see Section 2.4.3.1).
Moreover, they are also more efficient to compute than most other activation
functions. All these advantages made it the most used activation function in deep
neural networks nowadays (LeCun, Bengio, and G. E. Hinton, 2015). One problem
with this activation function is that units can "die", but there are several solutions
to this problem (see Section 2.4.6.3).
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New regularization techniques have also been proposed, especially to help control
overfitting. One major advance was the introduction of Dropout (G. E. Hin-
ton, Srivastava, et al., 2012; Srivastava et al., 2014; Baldi and Sadowski, 2013).
During training, at each epoch, each neuron has a probability 𝑝 of being dropped
out of the network. In practice, 𝑝 = 0.5 is the most used value. This means
that, at each epoch, a possibly different network will be trained. Under these
conditions, a neuron cannot adapt too much to other neurons (a problem known
as co-adaptation). This significantly reduces overfitting, especially since this is
equivalent to training a large number of smaller networks that are less subject to
overfitting. It has been demonstrated that Dropout is the first order equivalent of
an L2 regularization after some feature scaling (Wager, Wang, and P. S. Liang,
2013). It is important that at test time, the weights be multiplied by the dropout
probability. Dropout can be generalized to DropConnect (Wan et al., 2013), in
which connections between neurons are dropped with a probability 1 − 𝑝 rather
than dropping neurons directly. This has proved more efficient than Dropout on
several problems. One disadvantage of Dropout is that it requires more epochs
for training the complete network since only a smaller portion of the network is
trained at each iteration. Moreover, while these techniques lead to very large im-
provements in fully-connected layers, they do not improve much the performance
of convolutional layers. For this, special forms of stochastic pooling layers were
introduced and were shown to improve dropout effects on training convolutional
layers (Matthew D. Zeiler and Fergus, 2013; Wu and Gu, 2015). These models
are using a similar form of dropping but applied to the pooling layer (Max Pool-
ing Dropout) rather than on the convolutional layer itself. It was observed that
Dropout was not helpful for small data sets and its improvements for large data
sets was varying significantly from one data set size to another (Srivastava, 2013)

Not only was the training or neural networks largely improved by these techniques,
but it was also greatly sped up by different techniques. While Graphical Processing
Units (GPUs) were originally intended for processing graphics with a lot of small
elements, their massive processing capabilities led some people to use them in a
more general way, a technique known as General Purpose Graphical Processing
Unit (GPGPU) (Owens et al., 2007). Central Processing Units (CPUs) are built
for a very wide variety of applications and are fast for executing one task. However,
due to their high complexity and applicability, only few cores can be packed on
the same die. On the other hand, GPU are built especially to process data in
parallel (the idea being that each pixel can be rendered independently). So, while
CPU can provide the best single thread performance, GPU can provide many
more levels of parallelism. Several operations used in neural network training
can be processed with many threads, for instance the convolution or the general
matrix-matrix multiplication. Early researches have claimed GPU speedups in the
order of one or two orders of magnitude faster over CPU implementations (N. K.
Govindaraju et al., 2008; Silberstein et al., 2008; Z. Yang, Zhu, and Pu, 2008).
However, it is more likely that the speedup is between one and ten times faster
when both the CPU and the GPU code are carefully optimized (V. W. Lee et
al., 2010). GPUs have known many successes in Machine Learning and especially
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with neural network (Krizhevsky, Sutskever, and G. E. Hinton, 2012; Jia et al.,
2014; Simonyan and Zisserman, 2014). GPUs are now considered by most as
the go-to architecture for large neural networks training. Nevertheless, it is still
possible to obtain very good performance using only CPU when using adequate
performance optimizations (Wicht, Fischer, and Hennebert, 2016c). Section A.5
presents comparisons on CPU versus GPU performance on several operations.

Another improvement to speed up training is called Batch Normalization (Ioffe
and Szegedy, 2015). While it does not help much the quality of the final trained
model, it makes training much faster. Using this technique led to up to 14 times
faster training in some cases. Each training mini-batch is normalized so that the
distribution of the network activations dot not vary too much during training
when the parameters are updated. This normalization is performed on the inputs
of each layer. This highly reduces the dependence on training hyperparameters
in deep neural networks, since each layer will receive similar inputs. This has
the advantage of allowing larger learning rates during training by not letting the
gradients grow or decay too much. Batch Normalization by itself does not improve
a lot the final results, but it facilitates the training so that it is more effective and
much faster. It was also shown that this technique was acting as a regularizer
and was able to remove the need for Dropout during training, thus speeding the
training even more.

When these techniques are combined together, researchers are now able to train
very large networks in a matter of hours, or incredibly deep networks such as the
GoogLeNet network (Szegedy, Liu, et al., 2015) in a matter of weeks, whereas
training such networks a decade ago would have taken weeks, respectively months.

Now that very large networks can be trained in reasonable time, it also becomes
possible to make better use of data augmentation, to improve results even more.
Data augmentation consists in creating new versions of the input samples present
in the data set to have more data to train the model. This is especially useful
when working with images, for which it is relatively straightforward to create new
versions. The most common class of augmentation relies on affine transformations
such as rotation, scaling or translation of the image pixels. In practice, it is often
more efficient to use elastic transformations on images. In this case, a random
displacement field is generated and applied to each pixel (Simard, Steinkraus,
and Platt, 2003). Moreover, it is also possible to add random noise to the images.
Finally, another simple technique is to extract random crops from an image. For
instance, if the input is a 256x256 image, there are 1024 224x224 crops that could
be considered (Krizhevsky, Sutskever, and G. E. Hinton, 2012). At test time, the
activation probabilities are generally averaged over several crops of the test image.

3.4 Summary

Unsupervised pretraining is the technique that relaunched a very strong interest in
Deep Learning. By pretraining a neural network in an unsupervised manner before
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fine-tuning it for classification, researchers were able to reach new state of the art
performance. This started a new wave of research in neural network training.
This wave of research led to many new techniques that allowed researchers to
train larger and larger networks more efficiently and with a fraction of the time
that was necessary to train them only a few years ago.

Although it launched this new wave of research and interest, unsupervised pre-
training was soon overshadowed by these new techniques with which pretraining
was not fully necessary anymore. Although pretraining could still probably provide
a better initialization of the weights for the new generation of neural networks, this
would make training more complicated at the benefit of a few epochs of training
gained.

It was recently demonstrated that unsupervised pretraining is still useful on small
labeled data sets (LeCun, Bengio, and G. E. Hinton, 2015), especially on data sets
for which large amount of unlabeled data is also available. This was also shown
later in (O. E. David and Netanyahu, 2016) where a very small data set for painter
classification was complemented with large amount of unlabeled data and achieved
state of the art performance. Finally, it is also possible that unsupervised training
become important again in the near future (LeCun, Bengio, and G. E. Hinton,
2015) with new unsupervised training techniques.
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Chapter 4

Framework

C++ does not give you performance, it
gives you control over performance

Chandler Carruth
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4.1 Deep Learning Library

To support the research done during this thesis, a complete research framework
has been developed and made open source and available to the scientific commu-
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nity. This framework, called Deep Learning Library (DLL), has been developed
in a generic manner to make it useful to other researchers. The rationale behind
the development of the library rather than use an existing Machine Learning li-
brary is two-fold. First, at the beginning of this thesis, while Machine Learning
libraries for standard Artificial Neural Networks (ANNs) and Convolutional Neural
Networks (CNNs) were numerous and fully-featured, there was no support for Re-
stricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) other than
small standalone, undocumented, programs. Moreover, from a research point of
view, implementing a Machine Learning model from scratch is an excellent way of
reaching a maximum understanding of the model.

The library is not tied to any experiments done during the course of this project and
should be usable for any project requiring the use of Deep Learning. However, the
features that have been selected for implementation are the models and algorithms
required to support this thesis. Therefore this framework may not be as feature-
complete as other popular Machine Learning libraries.

DLL has been implemented in C++, for performance and practical reasons. The
framework has been made publicly available, under the terms of the open-source
MIT license, to other Machine Learning researchers1.

To see how DLL compares against other popular machine learning frameworks, in
terms of learning quality and performance, see Appendix B.

4.2 Models

Several Machine Learning models have been implemented in the library during the
course of this project. Since this research was heavily focusing on the RBM and
Convolutional Restricted Boltzmann Machine (CRBM) models, this framework is
also focused on these models. Nevertheless, several alternative models are also
supported by DLL (See Section 4.2.4).

4.2.1 Restricted Boltzmann Machine

The library has full support for RBM. They can be used either as standard fea-
ture extractor, as an auto-encoder, as a denoising auto-encoder or to perform the
pretraining of a DBN. The RBM model and its training procedure follows Hinton
model and advices (G. E. Hinton, 2012).

The standard binary and Gaussian units are supported. Moreover, hidden units
can also be Rectified Linear Units (ReLUs), capped-ReLUs (ReLU-n) or softmax
units. These units allow for a large number of networks to be designed to achieve
various goals.

An RBM can be trained using two different algorithms: Contrastive Divergence

1http://github.com/wichtounet/dll
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(CD) (see Section 2.4.3) or Persistent Contrastive Divergence (PCD) (see Sec-
tion 2.4.5). For both methods, several options are supported by the framework:

• Using momentum to speed up and stabilize the learning convergence

• Computing the gradients on a mini-batch basis rather then per sample to
improve efficiency and gradient quality and speed up training

• Using weight decay on the weight updates to reduce overfitting and improve
the mixing rate of the Gibbs sampling

• Enforcing sparsity of the hidden units activations to generate features that
are easier to interpret and more robust

• Using different initialization methods for the weights of the model

• Randomizing the order in which the samples are learned by the network

4.2.2 Convolutional Restricted Boltzmann Machine

Two versions of CRBM have been implemented, both following Honglak Lee’s mod-
els (H. Lee, Grosse, et al., 2009). The first model is a standard two layers model.
This follows the same principle as an RBM in which the activation probabilities of
the hidden units are computed from visible units using a valid convolution. The
second implementation uses Probabilistic Max Pooling (PMP). Since the pooling
layer changes the activation function of the hidden layer, this is implemented as
a second model rather than a subsequent pooling layer. For the first model, Max
Pooling can be achieved, in a non-generative way, by using a standard pooling
layer after the CRBM (see Section 4.2.4).

The same training algorithms and refinements as RBM (see Section 4.2.1) have
been implemented. A special method for Sparsity regularization of the model is
implemented, following the method introduced in (H. Lee, Ekanadham, and Ng,
2008).

4.2.3 Deep Belief Network

The DBN model is implemented as a stack of layers. Each layer receives inputs
from the previous layer and forwards its output to the next one.

In DLL, the DBN is implemented as a more standard neural network than a regular
DBN, i.e. layers that are not RBM-based are supported. The network can only
be pretrained when the layers are of an auto-encoder type.

It supports a patches extraction layer, which extracts small image patches from
a source image. Normalization and binarization layers have been implemented as
well. Finally, the model also supports standard layers from ANN such as pooling
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layers. In DLL, a DBN is a synonym of network and acts dependently of the layers
it is composed of. For instance, a network made of standard convolutional layers
followed by fully-connected layers will not support top-down inference.

When the DBN is pretrained, each of its layers is trained, layer by layer, in an un-
supervised way. The first layer is trained using the input data, while the following
layers are trained using the activation probabilities of their predecessor. Some lay-
ers are not pretrained: softmax layers, pooling layers and standard neural network
layers.

In this library, the same data structure is used for both the DBN and the Convo-
lutional Deep Belief Network (CDBN) models, only fine-tuning procedures differ
from one model to another. Standard and convolutional layers can be mixed inside
the network model.

The DBN model can be fine-tuned using either one of two different methods:

• A standard backpropagation algorithm (Stochastic Gradient Descent (SGD))
(LeCun, 1985). While being very simple to implement, this method is very
effective. Refinements such as momentum and weight decay have been im-
plemented. Moreover, this implementation supports mini-batch training,
meaning that a batch of data will be processed before the gradients are
computed. This makes for more efficient computation and for more stable
training. The implemented algorithm is able to handle fully-connected layers
and convolutional layers as well as pooling layers.

• A Complex nonlinear Conjugate Gradient optimization method (Shewchuk,
1994; Fletcher and Colin, 1964; Rasmussen, 2006). A Polack-Ribiere flavor
of the Conjugate Gradient method is used to find the search directions. The
step sizes are guessed with a line search using cubic and quadratic polynomial
approximations and a Wolfe-Powell stopping criterion. While this training
is generally more efficient and faster to converge than backpropagation, it is
very complex and contains several hyper-parameters that are difficult to tune
for the problem. Moreover, it is highly tied to the underlying model. For
these reasons, it is often more convenient to use a simpler backpropagation
technique. In DLL, this implementation supports only RBM layers, contrary
to the SGD implementation that supports all types of neural layers.

Moreover, the DBN can also be used as feature extractor directly, by giving it the
input and extracting the activation probabilities of the last layer of the network.
Classification support with SVM (Chang and Lin, 2011) using these features is
also integrated inside the library.

4.2.4 Neural Network

RBM and DBN models are often used conjointly with standard neural networks
and convolutional neural networks. They also can be used with standard utility
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layers that often complement neural layers. For this reason, the framework was
augmented to support several more classical layers.

An RBM model, once trained, is highly similar to an ANN without any hidden
units between the input units and the output units. Support for fully-connected
(dense) layers has been implemented, following the same implementation princi-
ples. In the same idea, support for convolutional layers has been integrated, in a
manner similar to CRBM and with the same performance optimizations.

Standard ANNs and CNNs can be trained using a Stochastic Gradient Descent
optimizer. The optimizer has been implemented to handle hybrid networks as
well, for instance convolutional layers followed by dense layers or a network where
some layers have been pretrained as RBM. The Conjugate Gradient optimizer has
not been adapted for neural network, the SGD optimizer being sufficient for most
experiments. Several refinements have been implemented as well. To avoid overfit-
ting, Dropout can be used while training (G. E. Hinton, Srivastava, et al., 2012),
stochastically removing units from the network during training. Standard gradient
descent uses very simple rules to update the weights and the biases of the network.
Over the years, many optimization algorithms have been developed (Ruder, 2016).
Support for the most popular optimization algorithms have been integrated in the
framework: Momentum (Qian, 1999), Nesterov Accelerated Gradients (Nesterov,
1983), Adagrad (Duchi, Hazan, and Singer, 2011), Adadelta (Matthew D Zeiler,
2012), Adam (D. Kingma and Ba, 2014) and RMSProp (Tieleman and G. E.
Hinton, 2012).

Several utility layers (non-neural layers) are available in the framework. The most
used utility layers in neural networks are pooling layers. Max Pooling and Average
Pooling layers have been implemented and are supported by the standard back-
propagation training implementation. Normalization layers such as Rectification
and Local Contrast Normalization (LCN) layers were also implemented (Jarrett,
Kavukcuoglu, Lecun, et al., 2009). It is also possible to augment the input data to
improve the training performance. For this, affine and elastic distortions (Simard,
Steinkraus, and Platt, 2003) are used to create new versions of the samples to train
on. Transformation layers to scale, binarize or zero-mean normalize the inputs of
the network or the outputs of some layer are supported as well. Finally, the frame-
work has integrated support for extracting patches from images directly inside the
network. In this configuration, the final output of the network is a collection of fea-
ture vectors, one feature vector per patch. This integration results in significantly
lower memory usage than generating the patches a priori and then concatenating
the results outside the network.

4.3 Visualization

Weights learned by an RBM or a CRBM are often complex to interpret. Comparing
two sets of features is not a trivial task. One solution that is often used is to
look at the visual aspect of the learned weights. For instance, in the case of digit
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Figure 4.1: Visualization of the convolutional filters learned with a Convolutional
RBM in DLL, on the MNIST dataset. These are the weights of the input layer,
showing that it is learning to detect various strokes.

recognition, a filter can be a detector for the digit 1 while another can be a detector
for the digit 9. In the case of multi-layers networks, the filters of the first layer
may detect strokes, while the subsequent layers are learning edges.

For this reason, basic visualization capabilities have been added to the framework.
Due to time constraints, the visualizer is only displaying the weights of the network
being trained. The visualizer is built as a watcher of the training procedure and
is updated every time a training epoch is completed. The visualizer has been
implemented on top of the OpenCV library (Bradski, 2000). The weight values
are directly converted to grayscale and no combination of layer weights is performed
(see Section 2.4.4). Figure 4.1 shows an example of filters learned with the library
on handwritten digits by a CRBM. While this visualization can be used on any of
the layer during pretraining, it does only show them independently and therefore
is not very visually appealing for layers other than the input layer. Indeed, the
following layers will learn from the feature representation instead of from the image
and therefore the filters may not be directly recognizable without going back to
the input space (See Section 2.4.4).
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4.4 Performance

A naive implementation of the RBM and CRBM models and their training algo-
rithms will usually lead to low efficiency. When devising the implementation of
such models, it is very important to pay attention to the performance.

4.4.1 Matrix Multiplication

When using CD to train an RBM with a mini-batch technique, the weights can be
applied to all the inputs of the mini-batch in one step using a large matrix-matrix
multiplication instead of several vector-matrix multiplication (G. E. Hinton, 2012).
A matrix-matrix multiplication is a very complex algorithm to optimize and typi-
cally requires a doubly-blocked implementation (Goto and Van De Geijn, 2008).
Fortunately, there already exists heavily-optimized of the algorithm, in the form
of Basic Linear Algebra Subprograms (BLAS) libraries (Lawson et al., 1979).
These libraries are providing several important linear algebra primitives such as
the matrix-vector or the matrix-matrix multiplication operations. The Intel Math
Kernel Library (MKL) has been chosen as BLAS library for the framework. The
MKL library is also used to perform the outer product needed for the gradient
computations, as well as some other minor operations.

4.4.2 Convolution

Training a CRBM requires two forms of convolution, a valid convolution to com-
pute the activation probabilities of the hidden units and a full convolution for the
visible units. A full convolution can be expressed in terms of a valid convolution
with some amount of padding of the input matrix. Convolution operations are
known to be computationally heavy and memory-bound. An example of a valid
convolution of a 5x5 image by a 3x3 kernel is shown in Figure 4.2. The equation
for the two-dimensional valid convolution of an image I with a kernel K into a
output image C can be obtained as such:

C𝑖,𝑗 =
𝐾∑︁
𝑘

𝐿∑︁
𝑙

I𝑖+𝑘,𝑗+𝑙 *K𝑘,𝑙 (4.1)

In that case, the kernel is already reversed prior to the convolution, leading to
what is known as a cross correlation that is more efficient to implement.

Modern Central Processing Units (CPUs) have advanced vectorization capabilities,
allowing them to perform several floating point operations during the same cycle,
known as Single Instruction Multiple Data (SIMD). The first optimization that is
done on convolution is to use fine-tuned vectorized algorithm instead of a standard
algorithm. Such algorithms have been written using either Streaming SIMD Ex-
tensions (SSE) or Advanced Vector eXtensions (AVX) for faster convolution. The
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Figure 4.2: A ’valid’ convolution of a 5x5 image with a 3x3 kernel. The kernel will
be applied to every possible position inside the image.

choice between SSE and AVX is done given the capabilities of the machines and the
dimensions of the convolution. For instance, AVX is able to perform operations on
eight single-precision floating point operations with one instruction. In practice,
we observed that a valid convolution convolution on single-precision floating point
numbers is almost eight times faster than the same implementation without vec-
torization. However, this speedup highly depends on the dimensions of the kernel.
When the kernel dimensions are not big enough or are not a multiple of the vector
size, the kernel and the image are padded so that vectorization is more efficient.
This significantly improves the performance of the vectorized implementations.

Algorithm 4.1 Compute a valid convolution C = I ∙𝑣 W with a Matrix-Matrix
Multiplication
W′ = reshape(W̃, [1, 𝑘1𝑘2])
I′ = matrix(𝑘1𝑘2, 𝑐1𝑐2)
I′ = im2col(I, [𝑘1𝑘2])
C = W′ * I′

A valid convolution is performed for each convolution filter of the CRBM for the
same input image. It is possible to speed up this operation by replacing the 𝐾
convolutions by one large matrix matrix multiplication (Ren and L. Xu, 2015).
For some configurations of convolution and when a highly-optimized version of
matrix-matrix multiplication is available, this significantly improves the perfor-
mance of the valid convolution. Algorithm 4.1 describes the necessary steps for
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this computation (im2col rearranges image blocks into columns). When this is
done for several images at once, the speedups are significant. Benchmark details
are available in Appendix A.3. When a full mini-batch is processed at once, the
computation can be speedup further using parallelization.

A full convolution can be expressed in terms of a Discrete Fourier Transform
(DFT). Indeed, the convolution theorem states that a convolution in the time do-
main correspond to a pointwise multiplication in the frequency domain (Bracewell,
1965). When the DFT operation is performed with a Fast Fourier Transform
(FFT) implementation, it is very efficient. This process is detailed in Algo-
rithm 4.2. The convolution needs to be large enough for the speedup to be inter-
esting. Moreover, since the same image is convolved several times with different
weights and the same weights are applied several times to different images, the
complete process can be improved by precomputing all the DFT transformations.
Benchmark details are available in Appendix A.4.

More details on the performed optimizations of the framework are available in
(Wicht, Fischer, and Hennebert, 2016c).

Algorithm 4.2 Compute a full convolution C = I *W with FFT
I′ = I zero-padded to the output size
W′ = W zero-padded to the output size
C′ = ℱ(I′) · ℱ(K′)
C = ℱ−1(C′)

4.4.3 Smart Expression Templates

While most of the time is contained inside computation-intensive kernels (con-
volutions and matrix multiplications), computations of activation functions and
gradients are still significant if not implemented efficiently. These operations can
generally be expressed mathematically as element-wise operations on large vectors
or matrices. To implement such expressions as efficiently as possible, while keep-
ing the code clear, Smart Expression Templates (Iglberger et al., 2012a; Iglberger
et al., 2012b) have been used.

Smart Expression Templates is a technique allowing to write an expression in a
program very close to its mathematical form, while avoiding the overhead of writing
such expression inefficiently. This technique allows the expression to be evaluated
in one pass over the different matrices or vectors and allows the expression to
be vectorized whenever possible. The matrix and vector computation code has
been decoupled from the main framework into an independent library (ETL2).
For instance, Listing 4.1 shows how the activation probabilities of a RBM are
computed inside DLL. The notation is very close to the mathematical form.

2http://github.com/wichtounet/etl
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Listing 4.1 Example of Smart Expression Templates in DLL to define the acti-
vation probabilities of a Restricted Boltzamm Machine.
h = sigmoid(b + v * w)
v = sigmoid(c + transpose(w * transpose(h)))

In practice, this could also allow more advanced techniques such as automatic
differentiation or symbolic computation to be used. A complete neural network
could be defined in terms of a graph and the gradients could be computed directly
from the graph to update the weights.

4.4.4 Parallelization

Parallelization has been applied at several levels to improve the performance of
training a neural network. First, the general matrix expressions can be com-
puted using several threads to maximize the CPU usage. Moreover, the compute-
intensive algorithms such as the convolution algorithms have been parallelized to
use as many threads as available on the machine. This proved to have the biggest
impact of parallelization. When it is available and more efficient to use, a parallel
version of the BLAS library is also used.

When training RBM models, and especially CRBM models, one mini-batch at a
time, most of the operations are only working on one image at a time. Therefore,
they are very good candidates to parallelize, since they are completely independent.
These independent operations are executed using several threads, speeding up the
overall process.

4.4.5 GPU

Due to their very high parallelization support, Graphical Processing Units (GPUs)
are able to perform some operations significantly faster than the CPU. Indeed, a
GPU has two or three orders of magnitude more threads than a standard CPU.
However, each of these threads is significantly slower than a CPU thread. In
practice, on average, a fully-optimized GPU implementation is between two and
three times faster than a fully-optimized CPU implementation (V. W. Lee et al.,
2010). Nevertheless, this difference can highly vary from one operation to another.

The main difficulty in replacing standard algorithms by GPU-implemented algo-
rithms is the high cost moving data from the CPU memory to the GPU memory
and vice-versa. For these reasons, it is only interesting to use GPU-optimized algo-
rithms when the cost of memory transfer is lower than the time gained by using the
GPU. Matrix multiplication algorithms are very good candidates being extremely
computationally intensive for large matrices. It is also very interesting when it is
possible to make several operations together without going back to the GPU. For
instance, 𝐴 *𝐵 *𝐶 could be done with the GPU without ever storing the result of
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𝐴 *𝐵 in CPU memory and therefore making the GPU version significantly faster
than the overall CPU version.

The framework takes advantage of the GPU by replacing some CPU operations by
GPU operations when it is more interesting (decided heuristically with a threshold
on the size of the matrices and the type of operation). To ease the development of
the library and its usage, the library does not make use of CUDA code directly, but
relies on various libraries that are made available by NVIDIA to perform several
computationally-intensive functions on GPU. This also has the advantage that
these routines are already highly-optimized, for several different GPUs. Currently,
the framework uses the GPU for the following operations:

• Matrix-Matrix multiplications with the NVIDIA CUDA Basic Linear Algre-
bra Subprograms (CuBLAS) library

• FFT and Inverse FFTs of large matrices with the NVIDIA CUDA Fast
Fourier Transform (CuFFT) library

• Convolutions and batched convolutions with the NVIDIA CUDA Deep Neu-
ral Network (CuDNN) library

Moreover, the framework also avoids going back through CPU for sequence of
operations that can be done entirely on GPU (such as 𝐴 * 𝐵 * 𝐶). However, the
framework cannot train a network entirely on GPU like other machine learning
frameworks.

The use of GPU is seamless, changing a simple compiler option will make the
library use the GPU libraries available on the target machine.

4.4.6 Memory

Neural networks have a high memory consumption. It is greatly increased when
the results of all the filters of a convolutional layer are computed at once (for per-
formance reasons), meaning that large intermediate matrices need to be kept in
memory. When training the network in a layer-by-layer manner, a lot of interme-
diate data is kept in memory for the following layers. Since the first convolutional
layers of a network are typically augmenting the data, this means a direct multipli-
cation of the data set size. This is not a problem when working on small data sets
such as MNIST where images are 28x28 in dimensions, but this quickly becomes an
issue when the data set contains realistically-sized images or contains much more
images. For these reasons, several optimizations have been performed to handle
large data sets while keeping the memory consumption as low as possible.

The first optimization is to choose the best data type for the weights and the
results of the different layers. Using a single-precision floating point type instead
of a double-precision type halves the necessary memory. Moreover, this also has
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the advantage that vectorized expressions can handle twice more data in one in-
struction and may improve performance of some fine-tuned algorithms by a factor
of two. On GPU, some frameworks are going even further by using half-precision
floating point numbers (Courbariaux, Bengio, and J.-P. David, 2014). However,
this is not natively available on CPU.

Secondly, the workspace size of some algorithms can also be optimized. For in-
stance, when computing the state of the hidden units in a CRBM, instead of
computing 𝐾 convolutions and then accumulating their results, a large amount of
memory can be saved by accumulating the results after each convolution. This op-
timization is performed for several operations, resulting in large savings of memory
is some cases (depending on the dimensions of the networks).

Finally, some memory can also be saved by not allocating memory for some lay-
ers. For instance, normalization layers can simply be processed inline and applied
directly to the memory of the previous layer, thus saving a full copy of the mem-
ory of the previous layer. This is done for every layer that does not change the
dimensions of the input and does not need any training.

For very large data sets, these optimizations are not enough to be able to train
a model completely in memory. In such cases, an out-of-memory mode has been
implemented so that very few information are kept in memory at any given time
and the data is assumed to be costly to retrieve (typically from disk). This comes at
the cost of significantly decreasing the performance of the system. To minimize this
decrease, two things are very important. First, the training algorithm (CD here)
should always have enough work and not starve. For this, it becomes interesting
to use a separate thread to compute the next batch of input for the training of the
current layer. Secondly, it is important to minimize the number of time the same
data is read from disk and it is equally important to read as much data in one time
as possible (for disk and memory optimization reasons). For this, several mini-
batches of training data are always read at once. The number of mini-batches read
at once depends on how large a mini-batch is in memory and can be configured
accordingly. For the first layer of the network, this change has less effect, but the
intermediate results of the network are not kept completely in memory for the
subsequent layers. Data is passed in batch from the data set trough the already
trained layers to form the training data of the currently trained layer. This means
that the features from the first layers will be computed several times for the same
data. Therefore, it becomes important that inference is as fast as possible. The
gain for fine-tuning is less interesting since it is not done one layer at a time and
therefore does not need to store full intermediate results.

4.5 Preprocessor

All the features of the framework can be directly used as a header-only C++ li-
brary. This allows for the highest level of customization and the best performance.
Nevertheless, not all Machine Learning researchers are familiar with programming
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in general or with the C++ programming language in particular or simply do not
have the time to create a new application dedicated to using the framework for
their problem. For these reasons, a simple preprocessor system has been devel-
oped, allowing the researcher to use the library by simply describing the network
and its options in a text file, in a manner similar to other popular Machine Learn-
ing libraries such as Caffe (Jia et al., 2014). While complex tuning of the net-
work in the training phase cannot be achieved with this method, this makes the
configuration and training of the network much easier. Every Machine Learning
researcher should be able to use this front-end to create Deep Learning models.
The most common options and features of the framework are available in this op-
erating mode. Behind the scenes, the preprocessor is simply generating a C++
program with the necessary code to implement the configured options. The gen-
erated program is then compiled and run directly. Listing 4.2 shows an example
of a configuration for a three layer network.

Listing 4.2 Example of a three-layer network defined with the DLL preprocessor
network:

conv:
channels: 1
v1: 28
v2: 28
filters: 10
w1: 5
w2: 5
activation: relu

dense:
hidden: 250
activation: relu

dense:
hidden: 10
activation: softmax

options:
training:

epochs: 100
batch: 10

4.6 Evaluation

It is important for the framework to be compared against other equivalent available
frameworks in order to validate its results and to judge its merits. Therefore,
it was decided to compare the framework against five popular machine learning
frameworks. Six different experiments have been performed, on three different
data sets. The evaluation is done on two different parameters. First, the quality
of the learned models is evaluated. Indeed, the networks trained with DLL should
not be significantly different from a network with the same parameters trained by
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Figure 4.3: Training time performance comparison of the frameworks on a Convo-
lutional Neural Network experiment, on CPU and on GPU.

another framework. Secondly, since one of the main focus of this framework was
on efficiency, the training time of the models has also been evaluated.

Overall, the DLL framework was able to train networks with similar accuracies
as the other tested frameworks. Moreover, on each experiment, it was the fastest
framework for training a neural network on CPU and was generally competitive
on GPU as well. For instance, Figure 4.3 shows the time necessary to train a CNN
for each of the different frameworks on the MNIST data set on the CPU and on
the GPU. All the details of the evaluation are presented in Appendix B.
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Chapter 5

Sudoku Recognition

The first step is to establish that something
is possible; then probability will occur

Elon Musk
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5.1 Introduction

The first question this research is trying to address is how much difference the un-
supervised pretraining of an Artificial Neural Network (ANN) is impacting fully-
connected networks and convolutional networks. Another question we are address-
ing is about the capability of the deep networks to perform feature extraction on
different types of inputs with the same neural network.

To answer these questions and as first research experiment, the detection and
recognition of Sudoku puzzles in images taken from Swiss newspapers with cell
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phone cameras has been chosen. This particular problem was chosen for several
reasons. First, a data set was already available in the research team, it was only
necessary to complete and finalize it. Moreover, due to the nature of cell phone
cameras and images taken from newspapers, the task is not necessarily trivial,
making it interesting to work on. Finally, since the recognition step necessary
in this problem is a form of digit recognition and this problem has already been
addressed with Restricted Boltzmann Machine (RBM) and Deep Belief Network
(DBN) (G. E. Hinton and Salakhutdinov, 2006), it was taken as an adequate
problem to start with. In a second time, the data set was extended with images
containing both handwritten and computer printed digits.

The Sudoku is a famous Japanese logic puzzle. It is played on a 9x9 grid with
numbers from 1 to 9. At the beginning of the game, the grid is partially filled,
with some cells being left empty. The goal of the game is to fill these empty cells
with numbers so that every row, every column and every 3x3 block contain all
numbers only once. This is a game that is often present in newspapers and that
is very appreciated nowadays. Figure 5.1 gives an example of Sudoku, before and
after resolution.

In this chapter, the overall system that was implemented to detect and recognize
Sudoku puzzles will be presented. First, the data set that was collected for this
purpose is presented. Then, the state of the art in Sudoku detection and recog-
nition is analyzed. The different classification systems are presented in detail and
their results are compared. The effect of pretraining is evaluated and compared
for both data sets and systems. Then, the overall results are presented. The run-
time performance of the system is also evaluated. Finally, conclusions about this
experiment are drawn.

5.2 Data set

To the best of our knowledge, at the beginning of the experiment, no free data set
of Sudoku images was available. The research on this problem was only presenting
results obtained on few images, not publicly available and therefore were impossible
to reproduce or to compare with other results. For these reasons, it was decided to
publish a data set that would allow future research to be done on publicly available
data.

A data set of Sudoku images was built on top of a smaller existing data set of
images from the research lab, gathered by Patrick Anagnostaras (Anagnostaras,
2008). The Sudoku Recognition data set (SRD)1 (Wicht and Hennebert, 2015) is
composed of 200 Sudoku images taken from different Swiss newspapers and from
various cell phones. The data set is split into a training set of 160 images and a test
set of 40 images. Due to the small size of the data set, the use of a validation set
is left to the discretion of the users. The pictures include parts of the newspaper

1https://www.github.com/wichtounet/sudoku_dataset
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(a) A non-filled grid (b) A grid with mixed inputs

Figure 5.1: Exemplary images from the Sudoku Recognition data set (SRD)

surrounding the puzzle, including sometimes parts of other Sudoku puzzles, which
makes the grid detection in itself somehow challenging. The pictures were taken
so that the conditions are very different from one image to another, including
shadows, blur and illumination gradients. Moreover, the nature of newspapers
makes some images distorted because of non-flat pages.

One specific question that was of interest in this work was to determine whether
a neural network would be able to easily handle two different types of inputs, i.e.
printed and handwritten digits. For that purpose, the data set was enhanced with
grids that were already filled. In that case, each grid contains both handwritten
and printed digits. Because not enough filled grid images were available, the data
set was augmented by filling the empty cells of existing puzzles with distorted
images from the MNIST data set (LeCun, Bottou, et al., 1998). The MNIST
images are used for drawing the ink of the new synthetic digits. The cells were
detected using a algorithm (see Sudoku puzzle Detection) and handwritten digits
were inserted at a random position around the center of the cell. Six different
colors were used as ink. Finally, a light Gaussian blur is used to make the result
more realistic.

Figure 5.1 presents two exemplary images from the data set. Figure 5.1a shows
the original image with an empty grid while Figure 5.1b shows the same image in
its synthetically filled version (mixed inputs).

To summarize, there are three versions of the data set:
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• V1 : The original version (Wicht and Hennebert, 2014), with 160 images.

• V2 : The improved version (Wicht and Hennebert, 2015), with 200 images

• mixed : Synthetically augmented version of V2 with fully-filled grids, with
200 images

In this chapter, the results are collected on V2 and mixed. Since V2 is mostly an
improved version of V1, results are not collected on V1.

5.3 State of the art

While a lot of research was done on strategies and algorithms for solving the Su-
doku puzzle, few existing research focuses specifically on detection and recognition
of Sudoku images. Nevertheless, there have been a few attempts at this problem.

A. Van Horn proposed a complete system to recognize and solve Sudoku puzzle
from images, based on a Hough transform (Van Horn, 2012). The puzzle is
detected from its four corners using the intersections of the detected lines. For
recognition, they center the digits inside its cell and use a ANN to classify them.
Interestingly, the empty cells are not detected a priori but are passed directly to
the classifier. This has been tested on a very small set of images. Moreover, the
test set used for the results is not publicly available.

Another system was proposed the same year by Simha et al (Simha, Suraj, and
Ahobala, 2012). The image is first binarized using adaptive thresholding and all
the components connected to the border of the images are removed. This allows
later recognition steps to perform better by having less noise and less components
candidates. A second Connected Components algorithm is used to identify the
largest component area inside the image. This component is used as the outer grid
of the Sudoku puzzle. Digits inside the grid are also located by their components.
Then, the detected digit images are assigned to a cell by applying a virtual 9x9
grid on top of the puzzle. Finally, classification is performed using a very simple
template matching strategy. Again, no results computed on a publicly available
data set are available.

Since neither of the two systems existing at the time of the experiment were tested
on a publicly available data set, it was not possible to compare our system directly
with these systems. This is one of the reason the Sudoku Recognition data set
(SRD) (see Section 5.2) was gathered and published.

More results were published after the analysis and proposal of our system. The
first one was proposed by Ly et al. (Ly and Vo, 2015). They also focus on Sudoku
images taken from magazines with a camera. In their system, the grid is detected
using a Hough transform on a binarized image. From there, the angle of the grid is
computed and the puzzle is rotated to help character recognition. The grid is split
into 81 cells by using a template matching technique with decreasing template
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size until all cells are found. Finally, the digits are recognized using a neural
network. No details were provided on the tests performed on the system. Kamal
et al. designed a system for detecting and solving Sudoku puzzles especially for
implementation on a Field Programmable Gate Array (FPGA) (Kamal, Chawla,
and Goel, 2015). In this system, local thresholding is applied to the gray-scale
image to binarize it. Then, a Hough transform is used to detect the biggest
quadrilateral inside the image. The digits are extracted from the grid using a
division in equally sized cells. Finally, some form of Optical Character Recognition
(OCR) is used to recognize the digits, but few information is given on that part.
The system was tested on a private data set of thirty images.

5.3.1 Camera-based OCR

All the pictures from the data set were taken in newspapers with phone camera.
The rationale behind this choice was to increase the difficulty of the task and
make it more interesting and somehow closer to what a real-life application would
look like. Indeed, text detection and recognition of images acquired from high
quality scanners is a long-time studied problem. There have been some extremely
efficient solutions proposed, see (Impedovo, Ottaviano, and Occhinegro, 1991) for
an exhaustive survey. As such, it is generally now considered an easy problem,
although there still exists some difficult edge cases, such as very complex historical
documents.

When the images of text are coming from optical camera, the problem remains
challenging for several reasons. Indeed, scanners have been conceived especially
for the task of digitalizing text documents, and later adapted to handle images as
well. They are very well tuned to this task, contrary to cameras that are tuned to
take scene images. Scanners are more accurate and especially more stable whereas
different cameras may produce very different pictures for the same original scene
and their quality is rarely on par with scanners. One caveat in phone cameras
is also that focus is not always good with optical zoom, although modern smart-
phones have been improving over the years. Moreover, whereas a scanner works
in a constrained and well-defined environment by controlling the illumination, pic-
tures can be taken with cameras in very different conditions. The background is
generally different from one picture to another and is subject to different lighting
conditions and may exhibit shadows and gradients of illumination. Finally, the
angle at which the picture is taken is entirely dependent on the person taking the
picture whereas scanned documents are generally almost perfectly aligned.

For a reference and more details about the challenges of camera-based analysis,
a complete survey of has been made available by Liang et al. (J. Liang, Doer-
mann, and Li, 2005). The different steps that are commonly performed to solve
this issue, such as localization, normalization and binarization, are presented with
existing solutions. It is shown that, although some solutions exist, it remains a
challenging problem and that many sub-problems are still unsolved. On the spe-
cific context of Mobile-Based OCR, the different challenges are presented in (Jain
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et al., 2013). This work analyzes and compares the different potential solutions to
these challenges. Many approaches rely on preprocessing steps that allow images
taken with a phone-based camera to be handled by standard existing techniques.
The conclusion is that, although solutions are getting better, there is still room
for improvement in this particular area.

When pictures are taken in a newspaper, new difficult conditions may appear. The
main difficulty is that the newspaper pages are not flat. This may lead to images
distorted in three dimensions making them much harder to analyze. Moreover,
since images are taken from different newspapers, the font styles and font sizes
are likely to be different from one editor to another. Finally, the Sudoku puzzle is
rarely well isolated on the page. Indeed, there are different objects (for instance
images, text or simply lines) surrounding the object of interest.

5.4 Sudoku Digit Detection

The first step before trying to recognize the digits is to extract them from the
Sudoku image. There are two main approaches to this problem:

1. Top-Down: Detect the grid, then the cells and finally extract the digits from
each detected cell.

2. Bottom-up: Detect the digits first and then build the grid from the digit
positions in the image.

The most used technique in similar cases is to use a top-down approach, which
is what was selected. A bottom-up approach could have been solved by machine
learning techniques using text detection models (Coates, Carpenter, et al., 2011).
But since text detection was not the focus of this research, standard image process-
ing techniques were chosen to solve the problem in a top-down approach. Moreover,
since some cells are empty, bottom-up detection would not necessarily have been
trivial.

To detect each digit inside the image, the following steps are performed:

1. The Canny algorithm (Canny, 1986) is used to detect the edges of the image.
From these edges, segments of lines are reconstructed with a Progressive
Probabilistic Hough Transform (Matas, Galambos, and Kittler, 2000).

2. Segments belonging to the same line are merged together using a simple Con-
nected Component analysis (Ronse and Devijver, 1984) and some heuristics
dedicated to the problem.

3. Intersections between the detected lines are then computed. The best cluster
of intersections (a perfect cluster of a puzzle has 100 intersections) is then
selected and its four corner points are computed as the corners of the grid.
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(a) The original image (b) The detected lines

(c) The detected grid cells and their indices (d) The final detected digits

Figure 5.2: The main steps for detection of a Sudoku puzzle inside an image, from
the original image to the detected digits.

4. The detected grid is split in 9x9 cells and the digit inside each cell, if any, is
isolated using a Contour Detection algorithm (Suzuki and Abe, 1985).

5. The isolated digits are centered inside a white image and then resized to a
32x32 image. The final image is extracted from the source color image and
then binarized using another binarization scheme for a better result.

The image processing algorithms of the OpenCV library (Bradski, 2000) were
used. The steps are the same for detection of the V2 and mixed data sets. However,
since there are no empty cells in mixed grids, several heuristics have been chosen
to be more aggressive since there must be a digit in each cell. Moreover, some
tests are also not necessary. Overall, the results of the detection are significantly
better for the mixed data set than for the V2 data set.

Complete information about these steps is available in (Wicht and Hennebert,
2014). Figure 5.2 shows the results of the four main steps computed on an exem-
plary image from the data set.
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(a) Model for the V2 data set (b) Model for the mixed data set

Figure 5.3: Abstract view of the Deep Belief Network used for classification of the
Sudoku digits. Each layer of the network is an RBM.

5.5 Digit Classifiers

After the complete detection process has been performed, each 32x32 digit binary
image has to be classified. Only digits are classified, the empty cells are eliminated
by the detection process. To solve this task, two different systems were developed.
The detection is performed in the same manner independently of the classifier
system.

Both data sets have 160 images for training and 40 images for testing. On the V2
training set, the detection process returns 4656 digits to train the system, while
there are 1156 digits to classify at test-time. On the mixed data set, there are
12960 training digits and 3240 test images to classify.

The systems are evaluated using two metrics. The accuracy at the cell-level, i.e.
the percentage of cells correctly classified over the entire data set, and the accuracy
at the Sudoku level, i.e. the percentage of Sudoku correctly classified. A Sudoku
is correctly classified if its 81 cells are correctly classified.

5.5.1 System I: Fully-Connected DBN

The first system is a standard DBN, with fully-connected layers only. The two
DBN models used for classification are depicted in Figure 5.3.

Several architectures have been considered for this network. The final architec-
ture is the one that brought the better classification accuracy while still being
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reasonably-sized. In both cases, a three-layer network yielded the best classifica-
tion performance. When more layers are being added to the network, the final
classification did not improve more, while the training and inference times were
going up. For these reasons, focus was made on a three-layer network. Regarding
the number of hidden units in each layer, large number of combinations were tested
and the configuration the most suited for classification was selected. With the final
number of hidden units, variations of about 5% to 10% in their numbers do not
change the final classification error. The size of the input images was chosen as an
average of every extracted cell so that the centering and scaling would not alter
the images too significantly.

Both networks are made of three RBM layers. In both cases, the input layer has the
same number of units, corresponding to the dimensionality of the images, namely
32x32 visible units. For the V2 data set, the first layer has 500 hidden sigmoid
units. The second layer is made of 1000 hidden sigmoid units and the last layer has
nine hidden softmax units. This network contains 1’021’000 parameters to learn.
For the second network (for the mixed data set), it was necessary to drastically
reduce the size of the network due to major overfitting issues, as explained below.
The final network has 300 sigmoid hidden units in the first and second layer and the
standard nine softmax units for the last layer. Thus, this network has significantly
less parameters than the first, only 399’900 weights. It should be noted that the size
of the first network could be reduced without significant impact on performance.

The weights of each RBM are initialized from a Gaussian distribution of mean 0.0
and variance 0.01. The first layer visible biases are initialized using c𝑖 = 𝑙𝑜𝑔( p𝑖

1−p𝑖
)

where p𝑖 is the probability of unit 𝑖 being 1 in the training set, following the advice
from (G. E. Hinton, 2012). All the other biases (visible and hidden) are initialized
to zero.

Each sigmoid layer is pretrained, in turn, as an RBM with Contrastive Divergence
(CD), with only one Gibbs step (𝐶𝐷1). While it is possible to use CD to pretrain
a softmax layer, it does not help the fine-tuning step. Generally, due to the
small number of softmax units, pretraining this kind of layer tends to hurt the
classification performance, therefore they have not been pretrained. Mini-batch
training is used to speedup training, with 32 images per mini-batch. The complete
data set is randomly shuffled before each epoch. The learning rate 𝜖 is set to 0.1
for each layer. L2 weight decay is used on each layer on the weights (not on the
biases) to reduce overfitting. Momentum learning is used to increase the speed
of learning and stabilize the training. The momentum 𝛼 is fixed to 0.9 for each
layer. Using a variable momentum has been experimented with, however, it only
decreased the stability of training while not helping the final classification error,
therefore only a fixed momentum was used in the end. For the V2 network, each
layer is trained for 50 full epochs.

Finally, once the pretraining is done, the complete network is trained for classifica-
tion with the cell labels using a Stochastic Gradient Descent (SGD) optimization
method. Again, mini-batch training is used, with 32 images per mini-batch. The
learning rate 𝜖 is kept to 0.1 for the entire training. The data set is randomly
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shuffled before each epoch. A momentum 𝛼 of 0.9 is also used and L2 weight
decay is applied on all weights. The network is trained for 100 epochs.

In the case of the model for the mixed data set, it was necessary to be more careful
than for the first data set. There are two major differences between the data sets
that are impacting training. First, the second data set has about three times
more training samples, making it easier to train. Moreover, the detection is much
more efficient on the second data set than on the first. Overall, this makes the
training highly prone to overfitting. For this reason, a smaller network was used.
Moreover, the parameters needed to be tuned accordingly. A smaller learning rate
𝜖 was used (0.03 instead of 0.1) and an higher L2 weight cost 𝜆 (0.005 in place
of 0.0002). Finally, the number of pretraining steps was reduced and the training
was stopped once the error stopped decreasing on a small validation set, while
the first network was stopped after a fixed number of epochs). With the final set
of parameters, the overfitting was largely reduced but still remains an issue. In
practice, it would be more efficient to use advanced techniques such as Dropout
and Data Augmentation (see Section 3.3). However, to keep the models simple for
this experiment, it was decided to not use any of these advanced techniques.

Once the network is trained for classification, it is trivial to use it to classify
an image. The activation probabilities of the first layer are computed from the
image and are passed to the second layer. The second layer computes its features
and passes them to the softmax layer. The outputs of the softmax layer are
the probabilities of each label. The unit with the highest activation probability
indicates the most probable digit. This final label is selected for evaluation.

Results

The best trained network achieved an accuracy of 97.75% on the V2 test set.
An error analysis shows that the main reason of errors lies in the quality of the
detection process being quite poor at detecting empty cells and passing them to
the classifier. If the errors due to the detection (empty cells not eliminated by the
detection process) are no taken into account, the accuracy is about 98.8% without
retraining. On the mixed test set, the achieved accuracy is 96.3%. In this case,
the problem is not related to detection but rather to significant overfitting of the
network.

Figure 5.4a shows the evolution of the training error during fine-tuning on V2 data
set. This follows a rather standard evolution with fast learning at the beginning
and slower evolution in the end. In Figure 5.4b, the mini-batch error over time
is presented. Again the same kind of curve can be observed. Nevertheless, it can
also be observed that not all mini-batches are alike, with some important outliers.

More interestingly, to see the impact of unsupervised pretraining, Figure 5.5 shows
the training error over time, during fine-tuning, with different numbers of pretrain-
ing epoch. These results are gathered on the V2 data set. The first interesting
fact about this figure is that fine-tuning after pretraining is much more stable than
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Figure 5.4: Evolution of the error for training the Sudoku Recognition Network,
during fine-tuning, after unsupervised pretraining on the V2 data set.

training without any pretraining. This can be observed on the pretrained curves
that have very small variations compared to the blue curve which varies a lot even
after more than a thousand batches. It seems that pretraining smoothes out the
training by not letting it diverge too much. Interestingly, pretraining the network
for only one epoch does not help the training error to converge faster, as can be
observed on the red curve. Indeed, although it speeds up the early training and
stabilizes the error, the error slowly becomes worse than when the network is not
pretrained. On the other hand, when the network is pretrained for enough epochs,
the training error converges faster and stays lower than the error of the randomly-
initialized network. Generally, the more epochs of pretraining are performed, the
faster the training error converges. However, in this particular case, pretraining
the network does not help break the plateau that can be seen in the Figure. Al-
though 100 epochs of pretraining converges faster than 50 epochs, it does not help
diminish the final classification error. Therefore, 50 epochs of CD were performed
for the final results.

For comparison, the evolution of the training error on the mixed data set is pre-
sented in Figure 5.6. It is interesting to see that it is very different from the
previous results (see Figure 5.5). First, the error is going down in a smoother way,
there is no long plateau at the end of training. This is because the data set is
in fact easier than the V2 data set. Moreover, while the effect of pretraining as
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Figure 5.5: Evolution of the training error during the first 2000 mini-batches
epochs of fine-tuning the Sudoku Recognition network, with different epochs of
unsupervised pretraining, for the DBN system, on the V2 data set.

a regularization method in the first case was very clear, it is not so significant in
this case. Indeed, to overcome the overfitting issues, stronger L2 regularization,
smaller learning rates and higher number of epochs have been used. Since the
network is already highly regularized, the effect of pretraining is less important.
The main difference in the different number of epochs is that the network without
pretraining is learning much faster than even the network with only one epoch of
pretraining. However, while the training error is going down very quickly, the test
error is very high on this network. Using even one epoch of pretraining largely
reduces this issue of overfitting. Moreover, the more epochs of pretraining are
used the faster the network is learning while still being regularized. However, after
some point, the training is again prone to too much overfitting. This is the case
where using 50 epochs of pretraining, while seemingly better on the graph, is in
fact worse than the network pretrained for 25 epochs. In the end, the best results
were achieved with around 25 epochs of pretraining.

The results presented in this section for the first system and the V2 data set are

96 Baptiste Wicht



CHAPTER 5. SUDOKU RECOGNITION 5.5. Digit Classifiers

0
1,
00
0

2,
00
0

3,
00
0

4,
00
0

5,
00
0

6,
00
0

7,
00
0

8,
00
0

9,
00
0

10
,0
00

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Batches

0 epoch
1 epoch
5 epochs
10 epochs
25 epochs
50 epochs

Figure 5.6: Evolution of the training error during the first 10000 mini-batches
epochs of fine-tuning the Sudoku Recognition network, with different epochs of
unsupervised pretraining, for the System I, on the mixed data set.

different from those published in (Wicht and Hennebert, 2014), being slightly
worse. Indeed, there are several differences between these experiments. First, the
present experiment has been conducted on a much more recent version of the deep
learning framework, which may explain some differences. More importantly, the
present results are computed on the second version of the data set which con-
tains 200 images instead of 160 images. Moreover, the new version of the data
set contains new images that are very different from the previous one, making it
an harder task. Then, the results are based on the results of the detection made
in (Wicht and Hennebert, 2015) which is tailored to handle mixed handwritten
and computer-generated digits. Finally, while the original results were based on a
special Polack-Ribiere flavor of the nonlinear Conjugate Gradient (CG) optimiza-
tion method (Shewchuk, 1994; Fletcher and Colin, 1964; Rasmussen, 2006), the
present results are computed using a more classical SGD optimization method.

The classification results obtained on the V2 and mixed data sets are significantly
worse than those obtained on the MNIST digit detection task (1.25% reported
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(a) V2 data set

(b) mixed data set

Figure 5.7: Abstract view of the Convolutional DBN used for classification of the
Sudoku digits.

in (G. E. Hinton, Osindero, and Teh, 2006)) with a similar DBN. Although both
tasks are apparently similar, there are several major differences. First, the MNIST
data set offers 60000 images for training while the current experiment has less
than 5000. Results for the V2 data set would probably improve if there were
more training examples. Moreover, the MNIST data set contains only very clean
images (the handwriting is not easy, but the images contain few noise) while images
here are extracted from difficult images and the preprocessing steps do not do a
perfect job of removing the noise. Also, while MNIST images have been scanned
on handwritten document, the Sudoku images are taken from phone camera on
newspaper. The resulting quality is not as good or as stable as those of a scanner.
Furthermore, both data sets contain some digits that are computer-written while
MNIST only contains handwritten digits. Finally, the images for training are
extracted from the digit detector which is not perfect. Some digits are extracted
from cells that are empty (incorrectly detected) and some digit images still contain
lines from the Sudoku puzzle. Therefore, an error rate higher than those obtained
on MNIST is explainable.
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5.5.2 System II: Convolutional DBN

In order to study the effect of pretraining on convolutional layers and compare it
to the effect on dense layers, the second classification system that has been imple-
mented for this task is a Convolutional Deep Belief Network (CDBN) (H. Lee,
Grosse, et al., 2009). While being based on the same principle, a major difference
between this system and the first system is that it also has convolutional layers in
front of the fully connected layers. The network has two convolutional layers, each
followed by a max pooling layer reducing each dimension by a factor of two. After
these first four layers, two fully-connected layers are used to perform the classi-
fication. The first three layers are using logistic sigmoid hidden units. The last
fully-connected layer uses softmax hidden units. The trained layers are pretrained
as Convolutional Restricted Boltzmann Machine (CRBM) and RBM. Figure 5.7
presents the details of the network for the two data sets. The network has much
less parameters than the fully connected versions. Indeed, the convolutional layers
being locally connected, it needs fewer parameters. There are no direct connec-
tion from each input pixel to each output feature. Each output feature is only
connected to a small window of the input image. The weights of each output
feature inside each group are shared. Moreover, since both max pooling layers are
reducing the dimensionality of the feature map by a factor of four, the following
layers have less inputs to handle. Overall, the first network has 26880 parameters
while the second one has 11650 parameters, to be compared with more than one
million for the first network of the first system. When they are compared with
state of the art Convolutional Neural Networks (CNNs), these networks appear
to be very small. For the first network, larger layers were not necessary due to
the nature of the data set. For the second data set, the network was kept small
in order to limit the problems due to overfitting and our will to stay with simple
regularization techniques.

The architecture that has been chosen for this task is similar to a very standard
CNN architecture (LeCun, Bottou, et al., 1998), but the neural layers are being
pretrained. Although there are few parameters to learn, the system is still largely
impacted by overfitting. This is because of the over-complete representation of
the convolutional layers. Indeed, the learned representation is larger than the
input representation, making the network prone to learn very simple solutions. A
first solution to solve this problem is to make the network as small as possible to
limit over-completeness. However, this also limits the learning capabilities of the
model. The second simple solution that was adopted is to reduce the learning rate
and train for more epochs. Moreover, weight decay is also used while trained, in
order to limit the number of free parameters, thus reducing overfitting. Finally,
pretraining itself being a regularization method, it should help reducing the overall
difficulty in training the network. When this is is combined with a smart choice
of pretraining hyper-parameters, it was found out to reduce overfitting. Ideally,
it would be necessary to use advanced techniques for overfitting such as Dropout
and Data Augmentation (see Section 3.3). However, we wanted to keep the model
simple to be able to compare it to the other systems.
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The weights of the RBMs and CRBMs are initialized from a Gaussian distribution
of mean 0.0 and variance 0.01. The hidden biases of the CRBMs are initialized to
-0.1 and all the other biases are zero-initialized.

The networks are trained in a similar manner as the first system. Each RBM and
CRBM is trained, layer by layer, using mini-batch CD with one Gibbs step (𝐶𝐷1).
L2 weight decay and momentum are also used to improve learning. The learning
rates 𝜖 have been very carefully tuned in order to avoid overfitting at this stage.
The first CRBM learning rate is set to 0.001, the second CRBM uses 0.0001 and
the third RBM uses 0.001. Due to the smaller learning rates, it was necessary to
pretrain the layers for 100 epochs. The data set is shuffled before each epoch.

Using the cell labels, the complete network is trained for classification using mini-
batch SGD. Momentum and L2 weight decay are used for each network. For the
first network, the learning rate 𝜖 is set to 0.08. The network is trained until the
error goes below some threshold. The second network uses a smaller learning rate
(0.03). The L2 weight cost 𝜆 is set to 0.0005.

Results

The best trained network for this system achieves an accuracy of 98.12% on the
V2 data set and an accuracy of 98.92% on the mixed data set. For the first data
set, the result is really close to the result of the first system (97.75%). This result
is very difficult to improve on since most of the errors are coming from errors in
the detection step. However, the result on the mixed data set were significantly
improved compared to the first system (96.3%).

While this system produced very good results on the mixed data set, its optimiza-
tion proved far from trivial. Indeed, as it was the case for the first system, this data
set is very prone to overfitting. It was necessary to test a wide range of training
parameters and network dimensions in order to find a network with the maximum
accuracy. Nevertheless, once carefully configured and trained, this system proved
significantly better than the system based on the fully-connected DBN.

To see if the impact of pretraining was the same on convolutional neural net-
works as on fully connected neural networks, the evolution of the training error
during fine-tuning was observed, with different numbers of epochs for layer-wise
pretraining. These results are presented in Figure 5.8. The first interesting thing
to observe is that even one epoch of pretraining provides a much better initial
value of the weights rather than a random initialization. Indeed, it can be seen on
the figure that even after 3000 mini-batches, the training error is still significantly
lower than when the network is not pretrained at all. However, it does not seem to
act as strongly as a regularization method as it did for the fully-connected DBN.
Indeed, the curves with more epochs of pretraining are only slightly more stable
than the curves with less epochs. This can be explained by the lower number of
weights of this system compared to the System I. Overall, this seems to indicate
that pretraining still does provide an excellent initialization of the weights for a
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Figure 5.8: Evolution of the training error during the first 3000 mini-batches
epochs of fine-tuning the Sudoku Recognition network, with different epochs of
unsupervised pretraining, for the Convolutional DBN system, on the V2 data set.

CDBN but has less of a regularization effect as for the fully-connected DBN.

Figure 5.9 shows the results of the same experiments on the mixed data set. Again,
it is clear that the pretraining epochs help a lot in providing a good initialization of
the weights. Indeed, the error without pretraining (the pink curve) has a training
error that is significantly higher than the models with even 1 epoch of pretraining.
On the other hand, the regularization effect of pretraining is definitely not present
here. Indeed, all curves are very unstable during learning. This confirms the
results from the V2 data set, by showing that pretraining in a CDBN and by
extension in a CNN provides a good initialization of the weights but has a much
smaller regularization effect than on fully-connected networks.

The results for the mixed data set are very different from those published in (Wicht
and Hennebert, 2015). The main difference is that the results presented in the pa-
per are using a CDBN only for feature extraction while a Support Vector Machine
(SVM) is used for classification from these features. Moreover, the results were
also conducted on different versions of the deep learning framework which may
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Figure 5.9: Evolution of the training error during the first 15000 mini-batches
epochs of fine-tuning the Sudoku Recognition network, with different epochs of
unsupervised pretraining, for the Convolutional DBN system, on the mixed data
set.

explain some small differences.

5.6 Results

The final results obtained by the proposed systems are summarized in Table 5.1
for both data sets and for both systems.

For the V2 data set, 33 Sudoku puzzles out of 40 in the test set are perfectly
recognized (every one of the 81 cells is correctly classified), averaging to a 82.5%
accuracy. There is no difference between the systems at the Sudoku-level, but the
second system is a bit better at cell-level accuracy. While this may seem low, there
are still very few errors on each Sudoku. Indeed, when considering the accuracy
at the level of a cell, 98.68% of the cells are correctly classified with System I.
When the errors are considered individually, more than 70% of them are coming
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Level System I System II
Cell-Level 98.68% 98.79%
Sudoku-Level 82.5% 82.5%

(a) V2 data set

Level System I System II
Cell-Level 97.01% 99.14%
Sudoku-Level 65% 92.5%

(b) mixed data set

Table 5.1: Accuracy of Sudoku Detection and Recognition system. A Sudoku is
correctly recognized if every one of its 81 cells is correctly classified. System I
is based on a fully-connected DBN while System II is based on a Convolutional
DBN.

Step V2 mixed
Layer 1 37 35
Layer 2 57 23
Fine-Tuning 178 68
Total 290 147

(a) System I

Step V2 mixed
CRBM 1 27 286
CRBM 2 15 179
RBM 1 4 30
Fine-Tuning 934 4028
Total 994 4547

(b) System II

Table 5.2: Training time for the Sudoku Recognition System, in seconds. The
total time includes the time necessary to load the data and detect the digits.

from detection issues with empty cells. It is either a digit detected inside a cell
that was empty or an empty cell detected where there was a digit. Regarding the
classification errors, most of the errors are coming from digits that are very similar
such as 5 and 6. Moreover, the networks are being trained on the results of the
detection, inducing more errors in the models, explaining the large outliers in the
training figures. Considering the low quality of several images and the difficulty
of Camera-based OCR and newspaper conditions (see Section 5.3.1), these results
were deemed satisfying. If they were to be improved, a better detection process
and a large amount of data would probably be necessary.

For the mixed data set, the results are very different. Since the detection results are
much better on this data set, the results are highly depending on the quality of the
classification system itself. The first system performs poorly, due to high unsolved
overfitting of the model, classifying correctly only 65% of the Sudoku images.
On the other hand, the second system excels at this with 92.5% of the Sudoku
images perfectly classified. Although the results on cell-level of the System I are
acceptable (97.01% accuracy), this still makes a lot of cells incorrectly classified
and therefore a poor overall score at the Sudoku level. With 99.14% of the cells
correctly classified by the System II, almost all Sudoku are correctly classified.

Baptiste Wicht 103



5.7. Performance CHAPTER 5. SUDOKU RECOGNITION

Step Min Max Mean Median
Image Loading 2272 78019 10640 2413
Line Detection 34570 69903 44084 39267
Grid Detection 202 28748 5884 230
Digit Detection 25747 78310 33791 31031
Digit Recognition 3027 4876 3827 3819
Total 67881 206192 96099 76293

Table 5.3: Computing time, in microseconds, necessary for each step of the pro-
posed system for Sudoku Detection and Recognition. With the System I on the
V2 data set.

5.7 Performance

The experiments in this section were conducted using the optimized implemen-
tations of the developed framework framework (see Section 4.4). The hardware
configuration is presented in Section A.2. The times necessary for training the
different networks is presented in detail in Table 5.2.

Overall, it can clearly be seen that the fully-connected DBN (System I) is much
faster to train than the convolutional DBN (System II). This comes principally
from the fact that fully-connected layers are much easier to optimize (almost all the
time is contained in the matrix-matrix multiplication kernel) than convolutional
layers. Moreover, a CNN generally tends to take longer to converge than fully-
connected models.

For the System I on the V2 data set, the complete network takes less than five
minutes to train. More than half the time is spent in fine-tuning which is more
computationally intensive than pretraining since it works on the complete network
rather than one layer at a time. The pretraining time for each layer mostly depends
on its dimensions. The trained networks being relatively small and the data set
being very small, the training times were not expected to be critical. Nevertheless,
when pretraining and fine-tuning the neural network without the performance
optimizations of the framework, the network is around two orders of magnitude
slower to train, completing in 6.5 hours. For the mixed data set, it is even faster.
This may seem counter-intuitive since the mixed data set has several times more
training samples. However, the second network is smaller than the first one and less
pretraining epochs are performed. Finally, the supervised training is stopped early
once a certain goal is reached, therefore less epochs of fine-tuning are performed.

For the System II, a large difference can be observed in training time between the
two data sets. First, this is because the data set V2 is three times smaller than the
mixed data set. Moreover, on the first data set, only 25 epochs of pretraining are
performed compared to 100 for the second data set. Finally, the learning rate was
reduced on the second data set and therefore more epochs of training are necessary
to reach the training goal.
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Overall, it is clear that training convolutional neural networks is much more time-
consuming than standard fully-connected neural networks. However, with a care-
fully optimized implementation, this can still be done in very reasonable time.
Moreover, it can also be observed that the cost of pretraining is small compared
to the cost of fine-tuning the full network.

The times necessary to compute each step of the detection and recognition of the
system are presented in Table 5.3 for the System I on the V2 data set. On average,
it takes about 100 milliseconds to completely detect and recognize a Sudoku in an
image. For realistically sized images, this time remains reasonable, but there is
still room for improvement. The time necessary to detect and recognize a Sudoku
image is largely dominated by the loading and detection of the image. Indeed,
the recognition itself only takes about 4% of the complete analysis time. The
detection uses several complex image analysis algorithms from the OpenCV library.
Moreover, the detection step was not optimized for performance as much as the
performance of the classification by the network. Recognition with the system II
is slower, with an average of 8732us per image. This is about 2.3 times slower
than the first system. Nevertheless, this still remains a small portion of the overall
analysis time.

5.8 Summary and potential extensions

This chapter reported results about the experiments in Sudoku detection and
recognition in pictures taken with phone cameras in various Swiss newspapers.
Since earlier research for this problem was not performed on publicly available
data, a new database was created and published: the Sudoku Recognition data
set (SRD). This data set is composed of 200 images of Sudoku puzzles. A second
version of the data set with fully-filled puzzles is also available.

The detection of the grid and of the digits is performed using several standard
image processing techniques. Then, the recognition is handled by two different
systems: A fully-connected DBN and a convolutional CDBN. Both systems are
pretrained with CD and fine-tuned with mini-batch SGD. On the first data set,
both systems were able to perfectly recognize 82.5% of the Sudoku puzzles. On the
second data set, the system II has proved more resilient to overfitting, although
its optimization has not been trivial, correctly classifying 92.5% of the puzzles,
compared to 65% for the first system.

The impact of pretraining the neural network prior to training it for classification
has been analyzed. When looking at the convergence of the training error over
time, it can be seen that the error curve is much more stable when the network
is pretrained. Moreover, when the network is pretrained for sufficient epochs, the
training error converges faster. This shows that pretraining does indeed act as a
regularizer. Moreover, this also shows that pretraining provides a good initializa-
tion of the weights. This second fact can be especially observed in the training of
the System II where the training is significantly faster with a pretrained network.
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However, although the training is smoother and faster, the final classifier model is
not much different with or without pretraining.

All the networks were trained in a small amount of time. The longest training
took about 75 minutes for the System II on the second data set. On the other
hand, the fastest network was trained in 2.5 minutes with the System I on the
same data set. On average, it takes about 100ms to process a complete Sudoku
from an image. The recognition is highly optimized and only takes between 4%
and 8% of the analysis on average.

Overall, the problem of detecting and recognizing a Sudoku Puzzle on pictures
taken from a mobile-based camera in a newspaper is not necessarily an easy task. A
large deal of the difficulty lies in the detection of the grid and the digits, impacting
the classifier. On the second version of the data set where all cells are filled,
the detection is much easier and the results are more tied to the quality of the
recognition model. As for the question of whether a single network can learn
inputs of two different types, with handwritten and computer-generated digits, it
was not as much of a problem as was expected at the beginning, especially with
the convolutional network that proved very good at this task.

If this experiment was to be taken further, it would be necessary to improve
the detection quality in priority. Indeed, the poor detection results are making
the training more difficult, especially on the V2 data set. Passing the empty
cells directly to the recognizer instead of handling them would surely improve the
detection results. A full end-to-end approach with CNN would probably be the
most efficient technique for this problem, but would require a complete overhaul
of the system. Then, it would also be interesting to resolve the overfitting issues
by using Dropout and augmenting the training samples by using affine and elastic
distortions. An interesting approach would be to use the results of the solver in
order to fix some mistakes at the recognition level. Finally, handling more difficult
situations like large rotations of the image would also be interesting to investigate.
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Chapter 6

Keyword Spotting

The only problem is time
Seth MacFarlane
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Figure 6.1: Spotting of the keywords Regiment and Diligence in a handwritten
letter from George Washington.

6.1 Introduction

Semi-supervised training was covered in detail in Chapter 3 and Chapter 5. With
such training scheme, the network is first pretrained using fully unsupervised data.
This pretraining step aims at generating a good initial state of the network. It
also leverages on the inherent structure of the data to extract features able to
reconstruct the input data. The training then uses supervised data to fine-tune the
model for its task (classification or regression). With this fine-tuning step, the final
model does not directly offer the extracted features anymore and does not directly
rely on them. Nevertheless, the structure of the network remains the same and
fine-tuned features could still be used for another task. It merely uses the extracted
features as a good initialization of the weights to make fine-tuning more efficient.
It was also seen in the previous chapters that numerous improvements on neural
network training have rendered this pretraining technique less interesting and have
made the training of neural networks easier. The present chapter focuses on fully
unsupervised feature learning. In that case, the model is trained only to extract
features from a data set and is not altered to do another task in a second phase. It
means that the model is trained entirely without labels. If classification is the final
goal, the features can be directly passed to another model that uses these features
instead of directly using the input or some handcrafted features. An advantage of
unsupervised feature extraction is that it does not require any supervised data for
training. Labeled data being much harder to obtain than unlabeled material, this
is a strong advantage. Of course, if classification is the final goal, a classifier would
still need to be trained on top of the learned representation and such training
would require labeled data.
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To test how the features learned automatically with a Restricted Boltzmann Ma-
chine (RBM) or a Convolutional Restricted Boltzmann Machine (CRBM) could
be used in an image analysis problem, it was decided to focus on handwritten key-
word spotting on historical documents. Figure 6.1 shows a simple example of word
spotting. Keyword spotting consists in finding occurrences of a given word in a
corpus of handwritten pages, without transcribing them. This task was chosen for
several reasons. First, there exist numerous data sets for this task. Moreover, it is
not a trivial task and there still is a lot of research going on in this field. Then, the
classifiers used to perform keyword spotting from the extracted features are quite
different, ranging from very simple template matching system to complex Recur-
rent Neural Network (RNN) architectures. Finally, most of the research in this
field is using handcrafted features especially designed for the task. Since there are
several available feature sets for this problem that are known to be working well,
this is a good opportunity to compare handcrafted features with features automat-
ically learned in an unsupervised manner. This is also a good task to evaluate the
performance of the learned features that can be used by different classifiers and
how difficult it is to tune the features for the keyword spotting task.

This chapter describes the results that were obtained for this experiment. First,
the task of keyword spotting in handwritten historical documents is presented in
detail. Then, the state of the art for this task is explored. After that, the three
different data sets that have been used in our experiments are presented. The
following section describes the reference feature sets that are used to compare
our learned features against existing handcrafted features. Then, the complete
system is described, from the feature extraction to the classification with either
of the two selected classifiers. The overall results are then presented in detail for
each of the classifiers and system optimization is discussed. Finally, the summary
provides conclusions as well as an outlook of some possible improvements for this
experiment.

6.1.1 Feature learning

Extracting features from images can be done in two manners. First, the most
classical way is to design features especially tuned for the task and sometimes
even tuned for a specific data set. These features are called handcrafted features
since an algorithm was designed manually to extract them, incorporating a priori
information on the specificities of the data. Some of the handcrafted features are
very simple, while some more recent feature sets are very complex and generally
highly-dimensional. The second category of features consists in automatically
learning features from the images using machine learning. This is a solution that
is used more and more since the advent of Deep Learning. These features are
called learned features.

Handcrafted features have several disadvantages.

1. They require expert knowledge of the data and of the problem. Few hand-
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crafted features can be applied to many different data sets for the same
problem. They often need to be tuned specifically for each data set.

2. They require time-consuming human-tuning of the features. Developing a
set of features for a data set is not trivial and may take a large amount of
time, even for experts of the field.

3. They do not generalize well to other data set showing new characteristics.
While they generally perform very well on the data sets for which they were
designed, slight changes in the data set may lead to poor performance.

There are many techniques to learn features from a data set, either supervised
learning or unsupervised learning (Bengio, A. Courville, and Vincent, 2013). His-
torically, supervised learning was used to learn a feature extractor, either with
simple dictionary learning or with an Artificial Neural Network (ANN). There are
several techniques than can be used for this task, K-means (Lloyd, 1982), Princi-
pal Component Analysis (PCA) (Hotelling, 1933), auto-encoders (Bengio, 2009)
and the family of RBM models, on which this experiment focuses. Since the advent
of Deep Learning, unsupervised learning has been used more and more to extract
features from data, especially from images. A comparison of the efficiency of some
of these models is presented in (Coates, H. Lee, and Ng, 2010).

Learned features are trying to overcome the issues of handcrafted features. Since
they can be trained on any data set, they generalize very well to change. Moreover,
they are generally able to cope well with unknown examples, due to the higher
generalization capabilities of neural networks. Finally, they do not require expert
knowledge of the data and should not require a lot of human-labour time. On the
other hand, they also have some disadvantages:

1. They do require expert knowledge of the system that is used to learn them.
Neural networks can sometimes be very complicated to train and unsuper-
vised training may reveal more complicated to manage than standard clas-
sification training.

2. They may take a large amount of time to train. Some very large models
need several days for training on large data set, where handcrafted features
do not need to be trained.

3. The system to extract features needs to be trained on each data set. It
generally means that using a new data set or a new format of data needs a
full retraining of the model, or at least an adaptation of the model using new
data to complement the old model. This requires some time for training and
some knowledge of the training system.

4. They may be slow to compute. Depending on the complexity of the network,
it may be time-consuming to extract features from the images. They are
faster than some complex handcrafted features but are generally slower than
simple ones.
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5. They are often complex. Sometimes they exhibit a very visual nature, but
it is not always possible to understand the features from an human point of
view, whereas handcrafted features are, most of the time, designed to "make
sense".

Overall, the research reported in this chapter is attempting to verify the hypoth-
esis that learned features are superior to handcrafted features in terms of task
performance. For fair comparison, we selected the state of the art handcrafted
features on the task of handwritten keyword spotting and compare them to our
learned features.

6.2 Keyword Spotting

Keyword spotting, or word spotting, consists in retrieving information from docu-
ments based on a keyword query. The query can be done by-example by providing
an image of the searched keyword or by-string by providing the searched keyword
itself. This research focuses on query-by-example (QBE). It can also be done by
retrieving lines containing the keyword rather than retrieving the occurrence of
the word, this has the advantage of not necessarily requiring word segmentation of
the lines (Fischer, Keller, et al., 2012). This experiment focuses solely on hand-
written documents (letters and historical documents). However, word spotting can
be applied to computer-written documents as well: The same keyword spotting
task exists in other domains such as speech or video signal, where the search is
performed in the set of documents without transcribing the documents.

For this research, the query is a template image of the searched keyword. For each
available word image, the word spotting system must take the decision of whether
the image contains the word from the query. In typical systems, the decision is
taken according to a threshold over some measure of distance 𝑑𝑠(X,K) between
the image X and the template image of the keyword K:

𝑑𝑠(X,K) < T (6.1)

In practice, 𝑇 will be chosen depending on whether precision or recall is more
important. It is also possible to use a different threshold for each keyword rather
than a global threshold.

6.2.1 State of the art

Keyword spotting was first proposed for speech analysis (Rose and Paul, 1990;
Myers, Rabiner, and Rosenberg, 1980). It was then adapted for poorly printed
documents a few years later (Chen, Wilcox, and Bloomberg, 1993; Kuo and
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Agazzi, 1994) and finally for handwritten text analysis (Raghavan Manmatha,
C. Han, and Riseman, 1996). It is still a widely researched problem.

Keyword spotting solutions can be separated in two families. First, template-based
methods are using a template image for the query keyword and comparing this
template with each word image of the document. These techniques are generally
very simple, but do have the advantage that it is easy to get template images.
Moreover, they do not require any knowledge of the language being processed.
On the other hand, spotting out-of-vocabulary keywords is not possible, since a
template image is necessary for each keyword to be spotted. The second family
of models, learning-based systems, are using machine learning techniques to learn
word models. They generally exhibit better generalization and are able to spot
arbitrary keywords. However, they need labeled data and a certain knowledge
of the underlying alphabet. They are also generally more complex models and
require some training time. Both families of models require some form of features
to perform keyword spotting.

6.2.1.1 Template-based

Template-based approaches are computing a distance between the query image
and the current image being inspected. Early works were based on computing a
single distance between two images. For instance, in (Raghavan Manmatha, C.
Han, and Riseman, 1996), the Scott And Longuet-Higgins (SLH) distance (Scott
and Longuet-Higgins, 1991) was used. Using some global characteristics of the
image, new features have been devised. In (Zhang, Srihari, and Huang, 2003),
several binary features were explored and (Bhardwaj, Jose, and V. Govindaraju,
2008) used the moments from binary images to form higher-level features.

While global features bring some interesting results, most of the recent and most
successful work is based on local features. In that case, features are computed in
some subpart of the image and then these subparts are compared between the two
images. The complete feature vector for an image is computed by concatenating
the local features. These kinds of distances are generally more robust. Several
strategies for locality of features have been devised. For instance, (Leydier et al.,
2009) used gradient angle features combined with some form of elastic matching
and (Rothfeder, Feng, and Toni M. Rath, 2003) used features computed at the
border of the images. One very successful combination is the use of a local sliding
window with Dynamic Time Warping (DTW) (Toni M. Rath and Raghavan Man-
matha, 2003). The sliding window is producing the locality in the features. Since
then, the use of DTW has become a very well established technique and can be
used with several different features, such as closed contours (Adamek, O’Connor,
and Smeaton, 2007) or word profiles (Tony M. Rath and Rudrapatna Manmatha,
2007).

Recently, local gradient features, similar to Histogram of Oriented Gradient (HOG)
features have been very successful for keyword spotting (Rodriguez and Perronnin,
2008; Terasawa and Tanaka, 2009). In (Kovalchuk, Wolf, and Dershowitz, 2014),
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a very large feature descriptor is created from HOG and Local Binary Pattern
(LBP) features. This large set is then pooled to a size that is the same for each
word and can be compared by a simple euclidean distance. Howe used energy
minimization scoring on top of a special inkball model to perform spotting (Howe,
2013). Almazan et al. developed a special feature set than can be applied to both
the template images and the query strings (Almazán et al., 2014). The proposed
feature set, named Pyramid Histogram of Oriented Characters (PHOC), makes it
very easy to perform keyword spotting by a simple nearest neighbour technique.
Another very compact and efficient representation was proposed by (Rusiñol et
al., 2015) allowing segmentation-free spotting. Retsinas et al. used Projection of
Oriented Gradients (POG) features with a direct feature comparison to achieve
very successful results (Retsinas et al., 2016).

6.2.1.2 Learning-based

Historically, all learning-based approaches were learning word-level models. By
using the posterior probabilities of a Hidden Markov Model (HMM) (Raghavan
Manmatha, C. Han, and Riseman, 1996) proposed a general approach for word
spotting. Several similar approaches were later proposed, for instance using sym-
metric half plane HMM in (Choisy, 2007) or using Fischer kernels to replace the
posterior probabilities in (Perronnin and Rodriguez-Serrano, 2009).

One drawback of word-level models is that they are unable to spot out-of-vocabulary
words. This is why several works are investigating character-level models, that are
more robust and from which it is easy to create word-level models for classification.
At first, character generalized Hidden Markov Model (gHMM) were trained using
character template images (Forsyth et al., 2005; Chan, Ziftci, and Forsyth, 2006).
A similar approach was used in (Cao and V. Govindaraju, 2007) with Gabor fea-
tures for each character. However, it is not trivial to extract such character images
from historical handwritten documents.

Since the lexicon is known, character models can be learned without segmentation
from word-level or line-level models. From these models, word-level and filler
models can be composed to create a robust scoring method. An earlier work (El-
Yacoubi, Gilloux, and Bertille, 2002) used this approach for an address reading
task. This was applied again for unconstrained keyword spotting in (Thomas,
Chatelain, Heutte, and Paquet, 2010). These techniques are segmentation-free
and the model is trained on complete text lines. These HMM approaches have
the disadvantage of needing a lexicon. An improvement over this was proposed in
(Fischer, Keller, et al., 2012), not comparing against other lexicon words but using
a character-based confidence model to perform scoring. Another approach using
RNNs at character level with Long Short Term Memory (LSTM) was proposed
(Frinken et al., 2012), outperforming both HMM and DTW on a similar set of
features. HMM have also been successfully combined with deep neural networks
(Thomas, Chatelain, Heutte, Paquet, and Kessentini, 2015).

Recently, more end-to-end approaches have been developed. One technique is to
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(a) IAM database
(b) PAR database

(c) GW database

Figure 6.2: Extracts from exemplary pages from the three data sets used for
keyword spotting.

use a large Convolutional Neural Network (CNN) pretrained on existing data set
with many images such as ImageNet and then adapted for the keyword spotting
data set (Sharma and Sankar, 2015). Another technique, designed for text spot-
ting in natural images, was presented in (Jaderberg, Vedaldi, and Zisserman,
2014) where a sequence of CNN using maxout units is used to extract features
from small images. Sudholt et al (Sudholt and Fink, 2016) used a deep CNN to
estimate PHOC features. Similar results were achieved by combining the text and
image embeddings into one convolutional representation (Krishnan, Dutta, and
Jawahar, 2016).

Generally, learning-based models can be used with arbitrary feature sets. There-
fore, most of the feature sets presented in the Section 6.2.1.1 can also be used with
the models presented in this section.

6.3 Data sets

For evaluating the features automatically learned using the proposed system, three
different data sets have been selected: two single writer data sets (PAR and GW)
and one multiple-writer (IAM). The data sets are presented in detail in the fol-
lowing sections. Figure 6.2 shows examples of parts of pages from the three data
sets.

The proposed evaluation does not directly use the original data sets, but uses
the versions made available by (Fischer, Keller, et al., 2012). These versions
already contain normalized and segmented line images and word images. Using
this prepared data set allows us to insulate our analysis out of the segmentation
task, making the assumption of a perfect segmentation.
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Data set Language Writers Pages Lines Words
GW English 2 20 656 4894
PAR Ancient German 3 47 4477 23478
IAM Modern English 657 1539 13353 115320

Table 6.1: Statistics on the entire data sets used for keyword spotting.

6.3.1 IAM off-line database

IAM is a data set collected by the Institute of Computer Science and Applied
Mathematics (IAM) from the University of Bern in Switzerland. It contains mod-
ern English handwriting works. The writers were told to reproduce text coming
from the Lancaster-Oslo-Bergen (LOB) corpus (Johansson, Leech, and Goodluck,
1978). This data set contains very different writing styles and all the text has been
written on paper with contemporary pens. Figure 6.2a shows one example from
IAM.

The IAM data set is large, with 1539 pages and 657 writers. Table 6.1 gives some
statistics about this set. The layout of this data set is significantly simpler than
historical documents, its difficulties lie in the difference in writing styles. Moreover,
the data set was collected so that the test set, the validation set and the training
set each contain text from different writers. This makes it necessary to be able to
work very efficiently with unknown writing styles.

6.3.2 George Washington database

The George Washington (GW) data set (Lavrenko, Toni M. Rath, and Raghavan
Manmatha, 2004) is a collection of letters written by George Washington and one
of his associates, in English. It is written with ink, on paper. The secondary writer
has been trying to mimic the writing style of George Washington, therefore the
two writing styles are very close and this data set is often considered a single-writer
data set. Figure 6.2c presents one example from this set.

This is a very small data set, with only 20 pages of relatively short letters. More
statistics about this data set are available in Table 6.1. The layout of the pages is
quite simple. Aside from the text, the pages are containing page numbers, some
rulers and signatures. Due to its small size, experiments on this data set were done
on four different cross-validation sets. When single results are presented, they are
averaged over the four validation runs.

6.3.3 Parzival database

The Parzival (PAR) data set (Fischer, Wüthrich, et al., 2009) contains the poem
Parzival, written by Wolfram von Eschenbach, in the 13th century, in medieval
German. It is written with ink on parchment. The copy that is considered here
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is the copy held in Switzerland, by the Abbey Library of Saint Gall. While it has
been written by three different writers, the styles are very similar. Moreover, one
of the writer largely dominates the others in terms of pages. Therefore, the data
set is also considered as single-writer data set. An exemplary image is shown in
Figure 6.2b.

This data set contains 47 pages of manuscript. More statistics are available in
Table 6.1. The style is very rich and contains ornaments and marginal notes. The
front pages have been slightly degraded by time, with small holes in the parchment,
large stains and wrinkles. Moreover, there are also a few lines that are overlapping
when they contain long descenders or ascenders characters.

6.4 Reference features

For evaluating the performance of the automatically learned features, three dif-
ferent features sets were selected for comparison. These feature sets were selected
because they are known to work well for keyword spotting and they have all been
tested on at least one of the selected data sets. The reference feature sets are:

• Marti2001 from (Marti and Bunke, 2001): This set of features is well-
known in the field of handwriting and has been used repeatedly and suc-
cessfully. It is a very simple set of nine heuristic features, extracted at each
column of the image. There are three global features: the percentage of
black pixels, the center of gravity and the second order moment. The re-
maining six features are local: the position of the lower and upper contours,
the gradients of both contours, the number of black to white transitions and
the percentage of black pixels between the two contours. These features are
lacking in robustness because they are only local to each column, aside from
gradients from column to column.

• Rodriguez2008 from (Rodriguez and Perronnin, 2008): This set of fea-
tures is inspired from the SIFT descriptor. It uses local gradient histogram
features with overlapping horizontal sliding window. The sliding window is
applied from left to right, on every column of the image. The window is then
separated into a grid. Histograms of gradient orientations are accumulated
in each cell of the grid. The features at each of the position are normalized
so that the components of each cell sum to one. Since each window is split
in a 4x4 grid and each cell has 8 bins of gradients, there are 128 features
for each column of the image. These features have an important advantage
over the column features of Marti since they have a much larger context for
each features. There still is features for each column, but these features are
depending on a significantly larger context, making the features significantly
more robust.

• Terasawa2009 from (Terasawa and Tanaka, 2009): This set of features
is very similar to Rodriguez2008 but makes several changes. First, the
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Figure 6.3: The Keyword Spotting system developped during this research. The
system extracts features directly from pixels and passes them to a DTW or an
HMM classifier to perform keyword spotting.

sliding window is significantly narrower (4x2 blocks). On top of that, there
is no horizontal overlapping inside the window, only vertical overlapping,
this means that the width of the block is restricted to that of the window.
The horizontal overlapping is achieved by the sliding window itself. Unlike
the SIFT reference, the signed gradient of orientation is used in place of the
unsigned gradient. They are also using more bins, 16 bins for each cell. In
total, there are 196 features for each column of the image. These features
also have the advantage of robustness because of the large context for each
feature column.

The implementations have been reproduced inside our keyword spotting system.
The parameters for each implementation have been extracted from the original
research papers.

6.5 Keyword Spotting System

An overall view of the proposed Keyword Spotting system is given in Figure 6.3.
The feature extractor is trained using the available unsupervised data for each
training data set. Once trained, it is able to generate features from any image.
Then, these features are passed to the classifier. The system was tested using two
different classifiers. The first system, DTW, is a pure template-based classifier that
does not require any training and as such the complete system does not require any
labeled data, making it a hybrid model (part template-based and part learning-
based). The second classifier that was used, HMM, is trained to recognize word
models, using the extracted features. The classifier is only responsible for scoring
each of the images using its own dissimilarity measures. From this, Equation 6.1
is used to decide whether the image contains the keyword query, independently of
the classifier.
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Figure 6.4: Two images of preprocessed lines from the GW (top) and PAR (bot-
tom) data sets.

When using DTW as the classifier, the system needs an example image for the
query, while it does only need a word transcription (in the language sense) when
using HMM. Both systems have advantages and disadvantages, but using these
two systems is interesting to observe how we can learn features generic enough to
be used by two very different classifiers. It is also interesting to see how much
impact better features can have on different classifiers.

Our evaluations solely focus on spotting at the word-level, thus requiring segmen-
tation of the text lines into words. Line spotting can be performed at the line-level
with DTW, but still requires word segmentation. However, when using HMM as
the classifier, the model can easily be adapted in order to perform line spotting
without requiring any segmentation into words, as shown in (Fischer, Keller, et
al., 2012).

This section describes the feature extraction system that is used to get features
from the image. Then, both classifiers are described into more details in the
following sections.

6.5.1 Feature extraction

Features are extracted in two steps. In a first time, the images are preprocessed in
order to increase the accuracy of keyword spotting. Then, features are extracted
from each image using a sliding window technique and a neural network that is
learning to extract features from the images in an unsupervised manner.

6.5.1.1 Preprocessing

The presented system works on binary word images. A simple global threshold is
used to binarize the images. On some of the data sets, a local edge enhancement
technique has also been performed (Fischer, Indermühle, et al., 2010). The line
images are then segmented into word images. Finally, the system normalizes all
the word images to remove the skew of the text by rotation and its slant using a
shear transformation. The height of the images is also normalized with respect to
the upper and lower baselines. Finally, the width of the lines is normalized with
respect to its number of letters. (Marti and Bunke, 2001) describes this process
into more details. These steps are actually already performed in the images from
the benchmark data sets that we used. Therefore, segmentation errors are not
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Figure 6.5: The Convolutional Deep Belief Network used for feature extraction in
the Keyword Spotting System.

taken into account for the presented results. These are the base images that will be
presented to the reference systems. Figure 6.4 shows two examples of preprocessed
lines from the data sets. These preprocessed images are also used for each reference
feature set, so this step is completely independent of the system being tested.

For the feature extractor, the height of the entire image is scaled down by a factor
of three. This is not performed for the reference handcrafted features that take as
input the uncompressed images.

6.5.1.2 Feature Extraction

To extract and learn the features, the proposed system uses a horizontal sliding
window of width 𝑊 and of the same height 𝐻 as the original compressed image.
The sliding window moves, from left to right, one pixel at a time, over the entire
image. For the windows that are intersecting with the borders of the image, outside
pixels are considered to be background pixels, set to pixel values of zero. Overall,
from an 𝑁 ×𝐻 image the system will extract 𝑁 patches of dimensions 𝑊 ×𝐻.

The model used for feature extraction is presented in Figure 6.5. The feature
extractor system is only presented with these patches, it does not have any knowl-
edge of the entire image. From this collection of images, distributed into a training
set, a validation set and a test set, a Convolutional Deep Belief Network (CDBN)
model is trained to extract features. The model is trained using Contrastive Di-
vergence (CD), in a completely unsupervised procedure. Moreover, the training is
only done layer by layer, not through the entire model. The model is composed of
two CRBM models stacked together. To improve translation invariance and the
robustness of the features, each CRBM layer is followed by a Max Pooling layer.
This also has the advantage of reducing the size of the output feature map, which
is important for some classifiers. Each pooling layer shrinks the representation by
a factor 𝐶 in each dimension. In this work, the pooling is non-overlapping, namely,
the stride is always equal to the pooling factor (𝑆 = 𝐶). Using a standard max
pooling instead of using Probabilistic Max Pooling (PMP) means that top-down
inference through the model will not be possible. However, PMP is not defined
for units other than binary, so standard max pooling was used. This also has the
advantage of efficiency because max pooling is a very simple operation.

An image X is transformed into 𝑁 patches x𝑛 extracted by the same sliding window
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procedure. Given the trained CDBN, each patch is then passed through each layer
of the network to compute its activation probabilities. The features of each patch
are then concatenated for the entire image:

𝑓(x) = [𝐶𝐷𝐵𝑁(x) activation probabilities] (6.2)
𝐹 (X) = [𝑓(x1), 𝑓(x2), ..., 𝑓(x𝑁)] (6.3)

The classifiers are then using 𝐹 (X) as input to compute their dissimilarity measure.

6.5.2 Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique used to find an optimal alignment
between two sequences of potentially different length. The two sequences are
warped non-linearly so that they match each other. For each point in one sequence,
DTW will find a corresponding point in the other sequence.

DTW was first introduced to solve speech problems (Myers, Rabiner, and Rosen-
berg, 1980) and has since also been very well-established in the field of keyword
spotting (Toni M. Rath and Raghavan Manmatha, 2003; Tony M. Rath and
Rudrapatna Manmatha, 2007). It has been used successfully with many different
types of features (Rodriguez and Perronnin, 2008; Terasawa and Tanaka, 2009;
Wicht, Fischer, and Hennebert, 2016b). Interestingly, it also has been combined
directly with a neural network (Iwana, Seiichi, and Frinken, 2016).

Before the DTW distance is computed, the features are normalized so that each
feature vector has zero-mean and unit variance. The cost of an alignment is the
sum of the 𝑑(x,y) distances of each aligned pair. This system uses the squared
Euclidean as the distance measured 𝑑(x,y):

𝑑(x,y) =
𝑁∑︁
𝑖=1

(x𝑖 − y𝑖)
2 (6.4)

The DTW distance 𝐷(𝐹 (X), 𝐹 (Y)) of two feature vector sequences 𝐹 (X) and
𝐹 (Y) is given by the minimum alignment cost, found by dynamic programming.
For speeding up the process and improving the results, a Sakoe-Chiba band (Sakoe
and Chiba, 1978) is used. This constrains the search of the path to be within a
band of a certain width around the shortest past, as illustrated in Figure 6.6. The
final distance is normalized with respect to the warping path (length of the optimal
alignment). When several occurrences of the keyword are available in the training
set, the example that minimizes the distance for the currently tested image is
selected. The distance over the 𝐹 (X) function (see Equation 6.3) is used as the
final dissimilarity measure between a word image X and a keyword string K
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A

B

Figure 6.6: Sakoe-Chiba band constraint for Dynamic Time Warping. The warping
path is constrained to the darker zone. Each point of the sequence A will be
matched to a point in the sequence B.

𝑑𝑠(X,K) =
𝑁

min
𝑗

𝐷(𝐹 (X), 𝐹 (T𝑗)) (6.5)

using each of the 𝑁 available template image T1, . . . ,T𝑛 of the keyword K. Since
it is a simple problem to solve, the DTW implementation has been implemented
directly in our experiment.

6.5.3 Hidden Markov Model

A Hidden Markov Model (HMM) is a statistical model, principally used for mod-
elling sequences of features that show a state-based nature. The sequential nature
of speech and handwriting makes it a very good candidate for these kinds of
problems. It models the probability distribution of the features over a series of
consecutive observations. This model has been introduced in a series of papers be-
tween the late 1960s and the early 1970s by Baum et al. (Rabiner, 1989). HMMs
have been used repeatedly and successfully for modeling handwritten text (Plötz
and Fink, 2009) and for keyword spotting too (Choisy, 2007; Chan, Ziftci, and
Forsyth, 2006; Rodriguez and Perronnin, 2008; Terasawa and Tanaka, 2009).
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Figure 6.7: The Hidden Markov Models (HMMs) used for keyword spotting.

The technique described in (Fischer, Keller, et al., 2012) is the one that was
selected as the base for an HMM classifier. The difference between the two classifier
is that this experiment performs word spotting while the original performs line
spotting, but this only slightly changes the model. Figure 6.7 presents the different
models used for keyword spotting. The system trains character HMMs for each
character contained in the available training set. Each model is trained using the
Baum-Welch algorithm (Rabiner, 1989). Once each character HMM is trained,
they can be used for recognition using the following technique. For an input
keyword query, a keyword model is created by aggregating character HMMs. Using
the Viterbi algorithm (Viterbi, 1967), this model can be used to compute the log-
likelihood score of an input image, log 𝑝(X|K), looking at the best path of state
sequence in the HMM. This will represent the probability of the given image being
the word query. Another model, the filler model, is constructed from the character
models in order to model an arbitrary sequence of characters. Again using Viterbi,
this second model is used to compute a score, log 𝑝(X|𝐹 ). This score is representing
the general conformance of the image compared to the trained word models and
acts as a regularizer. This will allow to normalize the word score with respect to the
writing style, allowing to compare scores directly and improving generalization to
unknown handwriting styles. To achieve this, log-odds scoring (Barrett, Hughey,
and Karplus, 1997) is used, subtracting the filler score from the word score. The
final score is also normalized with respect to the length of the keyword (in pixels)
𝑁𝐾 , resulting in the following final dissimilarity measure:

𝑑𝑠(X,K) =
log 𝑝(X|K)− log 𝑝(X|𝐹 )

𝑁𝐾

(6.6)

This is then used directly for keyword spotting. The HMM models and training
algorithms provided by the HTK toolkit 1 have been used for this experiment.

1http://htk.eng.cam.ac.uk
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6.6 Results

Following the same experimental evaluation, the results are presented separately
for the two classifiers that are used in the overall system. The various parameters
that have been necessary to tune to improve the results are also presented for each
system.

6.6.1 Experimental Evaluation

For performance evaluation, two different scenarios are considered. The precision
of the system is the metric that is measured. In both cases, the evaluation uses the
complete test set of each data set. First, in the local scenario, each keyword has
an associated local threshold. This scenario measures the Mean Average Precision
(MAP) of the spotting system. The second scenario is the global scenario in which
there is only one global threshold. This is to measure the Average Precision (AP)
of the system. The trec_eval software system 2 is used to compute both values
(Fischer, Keller, et al., 2012). The thresholds are never set explicitly, trec_eval
is handling this as well. Both scenarios could be used in practice. The local scenario
can use a global threshold for out-of-vocabulary words and the local thresholds can
be tuned on existing data sets to achieve better performance.

For both scenarios, the precision and recall of the system are also computed. These
values can be obtained using the number of false negatives (FN), false positives
(FP) and true positives (TP). Since the values will depend on the threshold being
select, they are defined as threshold functions. Using these values, the recall 𝑅(𝑇 )
and precision 𝑃 (𝑇 ) can be computed as follows:

𝑅(𝑇 ) =
𝑇𝑃 (𝑇 )

𝑇𝑃 (𝑇 ) + 𝐹𝑁(𝑇 )
(6.7)

𝑃 (𝑇 ) =
𝑇𝑃 (𝑇 )

𝑇𝑃 (𝑇 ) + 𝐹𝑃 (𝑇 )
(6.8)

and presented in the form of a recall-precision curve, once averaged over all queries.
These curves are also computed separately in the two different scenarios. These
results are also generated with trec_eval.

The source code for the implementation of the proposed system as well as the
implementation of the reference feature sets is available online3. This also includes
code for evaluation with DTW and HMM.

2http://trec.nist.gov/trec_eval
3https://github.com/wichtounet/word_spotting
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Table 6.2: Mean Average Precision (MAP) and Average Precision (AP) for the
different features when using DTW as classifier. The best feature set is indicated in
bold. The absolute and relative improvements and error reduction of the proposed
feature set over the best baseline is also mentioned.

GW PAR IAM
System AP MAP AP MAP AP MAP
Marti2001 40.11 55.74 63.73 60.39 5.00 19.89
Rodriguez2008 37.84 64.72 57.69 49.33 0.79 9.48
Terasawa2009 42.97 66.37 69.72 74.10 0.33 6.01
Proposed 53.71 67.26 70.77 75.11 0.1 2.62
Abs. Improvement 10.74 0.89 1.05 1.01 - -
Rel. Improvement 24.99% 1.34% 1.50% 1.36% - -
Error Reduction 18.83% 2.64% 3.46% 3.89% - -

6.6.2 Dynamic Time Warping

First the results of the evaluation with the DTW classifier are discussed. The
overall results are presented in Table 6.2 for each data set. The very poor per-
formance shown on the IAM data set with either the reference features or the
proposed feature set are explainable. Indeed, this data set is peculiar in that none
of the training writing style are present in the test set. In that case, basic template
matching strategies are known to have difficulties (Fischer, Keller, et al., 2012).
Therefore, a performance comparison in that case would not be conclusive.

The proposed system outperforms every baseline on every data set. Since Tera-
sawa2009 is always the best of the baseline, the performance of the proposed
system will only be compared to it. On the GW data set, there is a very signifi-
cant improvement in performance in the global scenario performance, resulting in
almost 25% improvement or a reduction of the error of 18%. On the other hand,
the improvement on the local scenario is not really significant. On the PAR data
set, the system reduced the error by about 3.5% against the best baseline. This
may not be a very large reduction, but the performance of the second baseline
is already quite good. On the IAM data set, as mentioned, the results are not
conclusive with DTW.

Overall, even with a basic classifier such as the DTW, the features are exhibiting
excellent performance. Especially, the learned features are more stable from one
data set to another compared to the reference features which shows quite low
performance on the global scenario of the GW data set, while being very good
on the global scenario of the PAR data set. This demonstrates one advantage
of the learned features that can be trained on different data set to improve the
results. Moreover, the excellent generalization on the global scenario on GW tends
to confirm this point.

For more details, Figure 6.8 presents the performance on the GW data set in the
form of Recall-Precision plots. The results for the PAR data set are shown in
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Figure 6.8: Recall-Precision performance of the Keyword Spotting System, with
DTW, on the GW data set.

Figure 6.9. This confirms the MAP and AP results obtained before. Indeed, a
significant difference can be observed in the global scenario of GW. However, on
the other cases, the proposed system is just slightly ahead of Terasawa2009.

While the performance achieved by the proposed system is good, its optimization
has not been trivial. Indeed, the system has many training parameters and the
architecture itself can be highly customized. Moreover, the DTW being a very
simple classifier, it proved very sensitive to the output of the system, rendering
the task of system optimization even more complex. The following sections are
detailing the principal points of optimization that were made in order for the sys-
tem to work as well as presented. They also describe the final optimal parameters
that were used.

6.6.2.1 Architecture

The first and most important aspect of system optimization was to select a correct
architecture for the feature extraction system.

The number of layers was the first parameter to tune. A network with one layer
had two disadvantages for the purpose of feature extraction. The generated fea-
tures were not high-level enough to distinguish different patches. Moreover, with
only one layer, too many features were generated by the network. This is an issue
with DTW for which having too many features has a negative impact on per-
formance. From the beginning, it was necessary to concentrate the research on
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Figure 6.9: Recall-Precision performance of the Keyword Spotting System, with
DTW, on the PAR data set.

networks yielding low numbers of output features in order for the DTW results
to be adequate. Networks with three layers were also investigated, but the inputs
are not complex enough for such a network to learn relevant features. Indeed, the
network is only learning on a small patch of the image. Moreover, if an image
patch goes through three convolutional layers and three pooling layers, the end
result would be a very small feature map.

The size of the convolutional filters was also optimized. Several configurations
yielded almost similar results. In every case, the second layer used 3 × 3 filters.
It was the best configuration for the second layer in every tested configuration.
For the first layer, 9 × 9, 7 × 7 and 5 × 5 filters yielded approximately the same
results, in order of preference. Moreover, 9× 9 reduced the size of the image more
than other configuration and thus improved the runtime performance of the overall
system. Therefore, it was decided to keep these filter shapes for each network.

The stride of the sliding window was important but has few opportunities for
optimization. In practice, only strides of one and two pixels performed well. When
the stride was increased more than that the performance decreased very quickly.
The reason is that the stride reduces the number of output feature maps linearly.
It was found that the length of a word is in itself a very important feature for
keyword spotting. Therefore, diminishing this length by more than a factor of
two was too much for the performance of the system. Since a stride of one pixel
performed slightly better overall than a stride of 2, it was kept at 1 for each data
set.
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Figure 6.10: Keyword spotting on the George Washington dataset with different
widths of the sliding window.

Another very important parameter was the width of the window on which the
network is trained. This parameter has several implications. First, it indicates
how much context is given to the feature extractor. Indeed, the feature extractor
only see information about the current window and learns features inside this
window. A larger window would give more context to the feature extraction.
Since padding in the borders is used, the width of the window does not impact
the number of output feature maps. However, larger windows also increase the
amount of overlap since the window is only moved one pixel at a time. Finally,
the width of the window is directly related to the size of one output feature map.
It is not directly possible to choose any size since it must be handled by the two
convolutional layers and the two pooling layers. It would be possible to ease this
restriction by using padding in the convolutions and pooling operations, but it was
decided not to use it for ease of implementation. The values compatible with our
system are the numbers multiple of 4, starting from 16.

Figure 6.10 shows the AP and MAP performance of the system using different
widths for the sliding window. The differences are very important between the
different configurations. When considering only the MAP, the best width would be
of 28 pixels, with values between 16 and 24 producing good results. From 32 pixels
and wider windows, the MAP performance starts to get very low. However, fewer
configurations are producing good AP results. Indeed, only 16 and 20 window
widths are performing adequately. For windows larger than 20 pixels, the AP
performance decreases very quickly, reaching almost zero at 32. These results are
similar when using the other data sets. In some cases, a window of 16 pixels is
more adequate, but overall, 20 pixels is the window size that produces the best
results. Therefore, the window width was set to 𝑊 = 20 for all configurations.
Interestingly, this is approximately the width of a character in the images.
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Figure 6.11: Keyword spotting on the George Washington dataset with different
numbers of convolutional filters in each layer.

Finally, once all the other architecture parameters are set, what remains is the
number of filters of the network. This parameter defines the number of different
convolutional filters that are learned on the images. It is directly related to the
learning capacity of the network. Figure 6.11 shows the performance achieved with
different numbers of filters in the convolutional layers. There are very significant
differences in performance between the different values of 𝐾. For the tested data
set, the best values are between 5 and 11. After 11, the performance decreases
very quickly. The Average Precision is almost 0 starting from 𝐾 = 13 and the
Mean Average Precision also decreases quickly. It can be seen on this data set
that 𝐾 = 7 is the parameter that maximizes both the AP and MAP performance.
On the PAR and IAM data set, the same phenomenon can be observed but slightly
more to the right. Indeed, it was found that 𝐾 = 12 is the best configuration for
the other two data sets.

6.6.2.2 Types of units

Several types of units can be used in a CRBM model. Moreover, contrary to
standard neural networks, an RBM has visible and hidden units and these two
units can be of different types. In this particular case, the input patches are
binary, therefore, the visible units of the first CRBM are best kept binary (using
the logistic sigmoid as activation function).

For the hidden units, there are several possible choices. The basic idea is to
use binary hidden units, which are generally working adequately in almost all
situations. Another possibility is to use Gaussian units, however, they are generally
best used as visible units and they can make the training highly unstable. Another
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Parameter Layer 1 Layer 2
Epochs 10 10
Learning Rate 𝜖 1× 10−4 1× 10−6

Momentum 𝛼 0.9 0.9
L2 decay 𝜆 2× 10−4 5× 10−4

Batch Size (GW) 128 128
Batch Size (PAR/IAM) 256 256
Clip Gradients 5.0 5.0

Table 6.3: Training parameters for the feature extraction system for keyword
spotting, used for Contrastive Divergence training.

solution is to use Rectified Linear Unit (ReLU) units as hidden units. When ReLU
units are used as hidden units, it is still possible to use binary visible units in the
second layer if the activation probabilities are sparse enough, otherwise Gaussian
or ReLUs must be used as visible units in the second layer.

In our case, the visible units are always binary visible units for both layers. This
activation function is very stable and very easy to learn. Originally, binary hidden
units were used for the GW data set and ReLU for the larger data sets (Wicht,
Fischer, and Hennebert, 2016b; Wicht, Fischer, and Hennebert, 2016a). It is diffi-
cult to train ReLU on the small number of images of the GW data set. Therefore,
binary hidden units were used. In that case, it was important to enforce the units
to have very sparse activation. Without sparsity, the results were significantly
worse. The simple comparison done in the DTW is only well suited to sparse
units. For this, the method described in (H. Lee, Ekanadham, and Ng, 2008) was
used and performed very well for this experiment. However, better results were
then achieved using capped ReLU (Krizhevsky, 2010). These units are capped to
some values which help make them sparser and makes the training of the network
much more stable for large networks and especially when large amounts of data is
available. The final network uses RELU-1 units in the first layer and RELU-6 units
in the second layer. These units proved to generate robust features and were easily
handled by the DTW. Moreover, the training with capped units was significantly
more stable than when using standard ReLUs.

6.6.2.3 Training parameters

A CDBN system has many training parameters and there are many possible re-
finements that can be used during training. Importantly, the training parameters
are independent from one layer to another and while some of them can be kept
the same, it has been necessary to tune some of the parameters for each layer.
Moreover, some of the parameters have much more impact than others.

Table 6.3 shows the different training parameters that were used to train the
proposed system. Each layer is trained for 10 epochs of CD. On the GW data set,
10 epochs proved the best around all cross validation sets. Some of the sets were
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demonstrating better results with slightly fewer epochs, but on average over the
four cross validation sets, 10 epochs was the best. On the larger data sets, fewer
epochs can be used to save some time, because of the very large number of patches
that are extracted, but going to 10 epochs did not hurt the performance and was
kept the same for all data sets for sake of convenience. The learning rate 𝜖 was the
most important parameter to tune for this experiment. It was necessary to use a
smaller learning rate for the second layer because of the much larger number of
input channels. Momentum was necessary to use to stabilize the training and make
it faster. Both the learning rate and the momentum 𝛼 were kept constant during
the entire duration of training. L2 weight decay has been used on all the weights,
but not on the biases, in order to help generalization. A higher weight cost 𝜆 is
used on the second layer to make learning more stable. A weight decay rate of
0.9 proved efficient for both layers. To avoid some instability in learning ReLU,
the gradients were clipped to 5.0 in both layers. This was especially interesting in
learning for the larger data sets.

The only training parameter changing between the data sets is the batch size. A
batch size of 256 was used for the PAR and IAM data sets that are significantly
larger than the GW data set for which the batch size of 128 was used. This does
not make a significant difference in spotting performance, but does speed up the
training significantly.

6.6.2.4 Normalization

Since the DTW classification is performed by comparing the features of two images
using the Euclidean distance, it is very important to ensure that the features are as
much comparable as possible. If features are of different scales, the overall distance
will not be meaningful.

The most important optimization is to scale each feature in a standard range.
While some work such as (Fischer, Keller, et al., 2012) uses linear scaling to
scale the final features in the range [0, 1], it was found out in this experiment
that scaling each feature so that they have zero-mean and unit-variance was more
efficient (called mean scaling here). This feature scaling is performed just before
passing the features to the DTW operator. This feature scaling is also performed
for the reference feature sets. It was in fact more important for the reference
feature set because the features are less sparse and more variable in range than
the feature learned by the proposed system.

Before the features are scaled and classified with DTW, the features x𝑛 of each
patch are normalized using a variant of L2 normalization:

x𝑛 =
x𝑛√︁∑︀𝑁

𝑛′ (x𝑛′ + x𝑛′) + 𝑒2
(6.9)

This is the equivalent of dividing the feature vectors by their L2-norm. This
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Figure 6.12: Impact of normalization on the keyword spotting features with the
DTW classifier, on the GW data set

follows the block normalization techniques seen in HOG (Dalal and Triggs, 2005).
The variable 𝑒 should be set to a small constant, it was set to 16 in the present
experiment, and the exact value should not, hopefully, be important. This is only
performed for the proposed features and not for the reference features which are
already normalized by nature. L1-normalization was also experimented with:

x𝑛 =
x𝑛∑︀𝑁
𝑛′ x𝑛′

(6.10)

Several techniques and combinations of techniques have been tested on the GW
data set. Figure 6.12 shows the results with different normalization schemes on the
GW data set. The configurations are easy to test since the model does not need
retraining. The results have been obtained by using the best trained model for all
tests and changing only the normalization process before the DTW classification
is performed.

It is interesting to note that the differences are more important in the global
scenario (the AP measure) than in the local scenario. Indeed, this is especially
showing that mean scaling of the features improves very significantly the results
of the global scenario. This can be explained as AP uses a global threshold for
which a normalization is expected to help smoothing out local variabilities. On
the local scenario, mean scaling is still significantly better than linear scaling, but
the differences are smaller. While there is a slight difference between L1 and L2
normalization, it is very small. Although adding L1 and L2 normalization to linear
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Table 6.4: Mean Average Precision (MAP) and Average Precision (AP) for the
different features when using HMM as classifier. The best feature set is indicated in
bold. The absolute and relative improvements and error reduction of the proposed
feature set over the best baseline is also mentioned.

GW PAR IAM
System AP MAP AP MAP AP MAP
Marti2001 66.59 81.97 85.03 89.57 52.50 69.92
Rodriguez2008 32.65 59.52 9.29 19.30 4.20 18.61
Terasawa2009 73.02 83.23 91.27 91.88 57.17 72.58
Proposed 73.17 87.90 92.19 94.40 64.57 74.49
Abs. Improvement 0.15 4.67 0.92 2.52 7.4 1.91
Rel. Improvement 0.20% 5.61% 0.99% 2.66% 12.94% 2.63%
Error Reduction 0.55% 27.84% 11.77% 45.0% 20.88% 7.48%

scaling improves the results over simply linear scaling, the difference is not signif-
icant over mean scaling. However, when considering all the data sets and all the
cross validation sets, a slight improvement was found when using L2 normalization
plus mean scaling when compared to simply mean scaling, therefore, it was kept
in the final system. Since the focus of the work was not on normalization, other
forms of normalization such as using the features of the entire data set or of the
entire page have not been explored.

6.6.3 Hidden Markov Model

The results using the HMM classifier are discussed here. The character HMMs
used for evaluation of the proposed features use 3 Gaussian mixtures per state
for the GW data set, 5 for PAR and 7 for IAM. For maximum performance,
the technique from (Günter and Bunke, 2003) has been followed, computing the
number of states for each character model from the mean width of the letters in
the images.

The overall results with an HMM classifier are presented in Table 6.4 for each
data set. The reason for the very low performance of the Rodriguez2008 features
with the HMM classifier has not been found. Nevertheless, since Terasawa2009 is
always better with DTW classifier and has excellent performance with the HMM
classifier as well, it has been considered as the best baseline and the proposed
features are compared against it.

From the results, it is clear that HMM is a much better classifier for word spotting
than DTW. Indeed, except for Rodriguez2008, the results with all the feature sets
are significantly better than with DTW. Moreover, there are also less differences
between the features of Marti2001 and Terasawa2009. This probably comes from
the fact that the original HMM system was developed and tuned for Marti2001
features (Fischer, Keller, et al., 2012). Although the results of the best baseline are
already very good, results from the proposed system are better in every situation.
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Figure 6.13: Recall-Precision performance of the Keyword Spotting System, with
HMM, on the GW data set.

Since the accuracies are high, it is more interesting to look at the relative error
reduction rather than the improvement in accuracy. Except for the local scenario
on GW, the error reductions of the proposed system are significant. In the best
case, in the global scenario of the PAR data set, the error is reduced by 45%. On
the GW and PAR data sets, the improvements are larger for the local scenario.
On the IAM data set, the error is reduced more in the global scenario than in the
local one. The system is proving to be able to generate good features for HMM.

For more details, Figure 6.13 presents the results for the GW data set in the form
of Recall-Precision plots. The plots for PAR and IAM data sets are shown in
Figure 6.14, respectively Figure 6.15. These curves confirm the overall results. It
is clear that the Rodriguez2008 features have some issues with HMM. It is also
clear that the features are very close together in terms in performance. Looking
especially at the PAR results, the proposed system learns features that are very
good for both scenarios, with a small advantage over the second baseline. Even
the very simple features from the Marti2001 baseline are doing very well with this
classifier, not being too inferior to Terasawa2009.

Overall, very few optimizations of the parameters were done for the HMM classifier.
Indeed, the parameters obtained after the extensive tuning of the parameters for
DTW have been working very well. Moreover, since it was a goal not to tune the
parameters independently for each classifier and since DTW is less efficient than
HMM, fine-tuning the system for DTW was a better choice than fine-tuning it
for HMM. This is showing that the learned features can indeed be used by two
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Figure 6.14: Recall-Precision performance of the Keyword Spotting System, with
HMM, on the PAR data set.
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Figure 6.15: Recall-Precision performance of the Keyword Spotting System, with
HMM, on the PAR data set.
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very different classifiers without tuning for both of them. The only thing that
was tuned was the number of Gaussian mixtures for each model. Numbers of
Gaussian mixtures from 1 to 10 were evaluated on each data set and 3, 5 and
7 were selected for the GW, PAR and IAM data sets, respectively. It is highly
possible that better results could be obtained with HMM if the parameters of the
feature extractor model were tuned accordingly and independently of DTW.

6.7 Grayscale images

All the results presented in this chapter have been obtained on normalized binary
images from the documents. However, binarization of historical documents is not
trivial and may result in a loss of information that could potentially be used by a
feature extractor. This section presents results on how the proposed system works
using grayscale images.

Ideally, the grayscale images would be directly extracted from the source images.
However, there does not exist any version of the used data sets for which grayscale
images are also available. The first experiment that was realized was to use the
word locations available in the Histograph data base (Stauffer, Fischer, and Riesen,
2016) to extract the words from the George Washington data set. However, the
word locations from this data set proved of low quality, being very coarse. In-
deed, even when most of the noise was removed, the images normalized in height
and binarized with Wolf and Jolion advanced technique (Christian, Jolion, and
Chassaing, 2002), the results with any of the reference feature sets were very poor.

Since no grayscale images of sufficient quality were available for any of the data sets,
it was decided to generate grayscale images from the normalized binary images.
For this, a Gaussian Blur was applied to each word image before it was cut into
patches, artificially creating grayscale images. For this, a Gaussian kernel with a
standard deviation of 2.0 in both directions was applied.

To handle grayscale values in the feature extractor and learn from them, there are
two main solutions. If the values are scaled down to the [0, 1] range, they can be
considered as probabilities and be handled by binary visible units. Nevertheless,
better results are generally observed when using Gaussian visible units. For a
noise-free reconstruction, the inputs are normalized to have zero mean and unit
variance. This was confirmed in these experiments where Gaussian visible units
proved more efficient than binary visible units. Gaussian visible units were also
used in the second layer for a small improvement in performance, but binary visible
units could have been used as well. When using Gaussian visible units and ReLU
in the layers, it was necessary to reduce the learning rate 𝜖 of the first layer by
two orders of magnitude (from 1× 10−4 to 1× 10−6). With greater learning rates,
the training diverged very quickly. Indeed, with Gaussian visible units, there is
no upper bound to the components of the reconstruction, leading to instability in
training, requiring smaller learning rates. The learning rate of the second layer
was already small enough (1× 10−6) to handle Gaussian visible units and was not
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Table 6.5: Mean Average Precision (MAP) and Average Precision (AP) for the
system with grayscale images, with both classifiers. The best feature set is indi-
cated in bold. The absolute and relative improvements and error reduction of the
proposed feature set over the system with binary images.

GW (DTW) GW (HMM)
System AP MAP AP MAP
Marti2001 40.11 55.74 66.59 81.97
Rodriguez2008 37.84 64.72 32.65 59.52
Terasawa2009 42.97 66.37 73.02 83.23
Proposed (Binary) 53.71 67.26 73.17 87.90
Proposed (Grayscale) 53.96 68.34 76.55 86.68
Abs. Improvement 0.25 1.08 3.38 −1.22
Rel. Improvement 0.46% 1.58% 4.4% −1.4%
Error Reduction 1.46% 3.41% 14.41% −9.2%

changed. Even with the smaller learning rate, the training with Gaussian visible
units and ReLU hidden units is very unstable. Even when increasing the number
of epochs, we observed significant differences between different trainings.

The results obtained with this system when using DTW as classifier are presented
in Table 6.5. The Recall-Precision curves for this case are shown in Figure 6.16.
The improvements for the global scenario are small, around 1.5% of error reduction.
On the local scenario, the improvements are more significant with around 3.4%
error reduction. When observing the results of the local scenario in the Recall-
Precision curves, it can be seen that most of the benefit is obtained by extra
precision on the tail of the curves. On the global scenario, the difference is much
smaller when observing the curves.

When using HMM as a classifier (results in the last two columns of Table 6.5),
the results are more mixed. Indeed, in the global scenario, the error is reduced by
more than 14%. However, in the local scenario, the error is increased by about
9%. The Recall-Precision curves for these scenarios are shown in Figure 6.17.
The difference can be clearly observed. Indeed, the system with grayscale images
performs significantly worse on the local scenario, while a significant increase in
performance can be observed in the global scenario.

Overall, there is some potential in using grayscale images rather than binary im-
ages. Nevertheless, it would be more interesting to use the real grayscale images
rather than artificially creating them from binary images. Indeed the mitigated
results may also comes from the fact that it is difficult to recreate an informa-
tion that was discarded during the binarization process. However, the lack of
segmented grayscale word images makes this harder to achieve. Finally, the in-
stability on learning with Gaussian visible units and ReLU hidden units makes it
difficult to learn a good model.
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Figure 6.16: Recall-Precision performance of the Keyword Spotting System, using
grayscale images, with DTW, on the GW data set.
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Figure 6.17: Recall-Precision performance of the Keyword Spotting System, on
grayscale images, with HMM, on the GW data set.
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Table 6.6: Time necessary to evaluate the results of one set of the GW data set
with each feature set, the time for training the HMM is included. All results are
in seconds.

System DTW HMM
Marti2001 19.54 81.12
Rodriguez2008 47.95 280.43
Terasawa2009 71.36 643.196
Proposed 26.11 391.545

6.8 Efficiency

As shown in the previous sections, the keyword spotting accuracy of the proposed
system is very satisfying. Nevertheless, it is a complex system that needs training
and from which it is not trivial to compute features. Therefore, it is also important
to consider the runtime efficiency of the system, both for training the feature
extractor and for computing the features and evaluating them. The hardware
configuration is detailed in Section A.2.

Table 6.6 presents the time necessary to perform keyword spotting for one cross
validation set of the GW data set. The training time of the feature extractor is not
taken into account. The time necessary for the evaluation with DTW is mostly
related to the feature extraction and only loosely to the feature dimensionality. The
fastest system is Marti2001 which is also the simplest and smallest feature set. For
the same reasons, the proposed system is very fast with DTW because it has been
optimized for feature extraction and its dimensionality is not critical for DTW.
On the other hand, the used implementation of the other two reference feature
sets is not optimized for feature extraction and therefore, there is a large overhead
at this point. Nevertheless, even the slowest system is able to be completely
evaluated on this data set in about 71 seconds. The timings with HMM are more
interesting. Indeed, in that case, the time is dominated by the time spent inside the
HMM training and the HMM evaluation using the Viterbi algorithm. For this, the
dimensionality of the features is very important. This can be shown in the results
where the feature set are ordered by their dimensionality. Marti2001 features
are very small and thus are the fastest of the feature set. Terasawa2009 has
the highest dimensionality, which makes it the slowest. In the end, the proposed
system is positioning itself between Rodriguez2008 and Terasawa2009. Overall, the
significant advantage of DTW over HMM in terms of performance is also partially
explained by the use of the Sakoe-Chiba band, significantly reducing the number
of operations necessary.

Contrary to the other baselines, the proposed system needs to be trained. It is
important that the system can be trained in reasonable time for the system to
be used. Table 6.7 presents the time necessary to train the feature extractor on
each data set. For comparison, the training time of the HMM is also included
as well as the time necessary for evaluation with the HMM classifier. On the
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Table 6.7: Time necessary to train the feature extractor. L1 and L2 are the times
necessary to train the first layer, respectively the second layer. For comparison,
the times for training and evaluation with HMM are included. All results are in
seconds.

Data set Complete L1 L2 HMM Train HMM Eval
GW cv1 1690.82 1241 449 44.744 391.01
GW cv2 1771.88 1300 471 44.983 458.36
GW cv3 1762.64 1295 465 46.435 328.21
GW cv4 1714.17 1256 458 45.12 376.46
PAR 8038 5219 2818 401.22 8932.28
IAM 53130 32019 22110 11715.8 48235.1

Table 6.8: Number of patches for each data set and number of patches processed
by seconds by each layer during training.

Data set Patches L1 L2
GW cv1 370139 2983 8248
GW cv2 375955 2890 7982
GW cv3 381126 2938 8187
GW cv4 375310 2988 8194
PAR 1118197 2142 3968
IAM 4532408 1461 2049

GW data set, training the full model takes slightly less than half an hour. Even
if this is a short training time, this is a very large overhead compared to less
than one minute for HMM classifier and about six minutes for the evaluation.
Nevertheless, it remains a relatively low training time. Training the CDBN takes
about two and a quarter hours for the PAR data set. This is still very large
compared to the seven minutes needed to train the HMM, but it is only as long
as the evaluation itself with HMM. The training on the images from IAM is very
time-consuming, taking more than 14 hours for the full model. Nevertheless, it
is already two hours shorter than the HMM evaluation and training which is also
very time consuming. Overall, training the model incurs a significant overhead
when compared to standard features, especially on small data sets. On large
data sets where the HMM evaluation takes significantly longer, the overhead is
less significant, but it still takes about the same time to train the model than to
evaluate it with the HMM classifier, including the HMM training time.

Table 6.8 presents detailed results for each layer with the number of patches pro-
cessed per second for each layer. Although the number of images in each data set
is not necessarily high, the number of patches generated from them is important.
It should be clear that the network is able to process many patches per second and
is very efficient. On GW data set, the first layer is able to process 3000 patches
per second, while the second layer is able to process more than 8000 patches per
second. The second layer has much smaller inputs than the first layer, therefore it
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is much faster to process patches. On the PAR data set, the speed is significantly
lower. Indeed, the first layer is able to process about 2100 patches per second while
the second layer only processes 4000 images per second. The results are lower for
two reasons. First, there are more feature maps in each layer than on GW. More-
over, due to the larger data sets, there are many more cache faults generated by
the processor and the data locality is significantly worse. On the IAM data sets,
the speed is even slower, with 1400 patches per second for the first layer and 2000
for the second layer. Since there are too many patches in this data set to fit in
memory on the machine used of these experiments, the patches are regenerated
from the original images for each mini-batch. This has a very large overhead. If
the patches were able to fit in main memory, the speed would be almost equivalent
to the speed on the PAR data set. Considering that these results are generated on
a low-end Central Processing Unit (CPU) without any Graphical Processing Unit
(GPU) acceleration, the training times can be considered rather acceptable

Overall, the proposed system is able to compete with the other baselines for eval-
uation, being even faster than the Terasawa2009 baseline. The feature extraction
process is already fast and could even be optimized further if necessary. However,
the system needs to be trained and the training time of the complete system is
significant. Nevertheless, considering the large number of patches with which the
system is trained, the overall system can still be trained in very satisfying times.
Indeed, the system is able to train up to 8000 patches per second, on a low-end
CPU machine. This is only possible due to the performance optimizations that
were developed in the used framework (See Section 4.4).

6.9 Summary

In this chapter, results about experiments in Handwritten Keyword Spotting in
Historical documents were reported. Unsupervised Learning was used to auto-
matically learn a feature extractor over small patches generated using a sliding
window, over a word image. These features are then passed over to a classifier,
either DTW or HMM, to take the final word spotting decision. The performance
of the generated features is then compared to three reference feature sets, on three
different data sets.

On every tested situation, the proposed feature extractor outperformed each ref-
erence feature set. When using DTW as a classifier the system was able to reduce
the error by up to 18%. When HMM is used, the error is reduced by up to 45%.
When using binary images transformed into grayscale using a Gaussian blur, the
error is reduced by up to another 3.4% when using DTW. However, it has more
mixed results with HMM, improving the performance in the global scenario but
reducing it in the local scenario.

Although the proposed system outperformed every baseline and proved very effi-
cient in learning features from the tested data sets, its optimization has proved
rather challenging. Indeed, not only does the model have many design parameters,
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there are several training hyper-parameters. Moreover, when Gaussian visible units
are used with ReLU, the training of the model revealed not very stable, resulting
in significant differences between different trained models.

Regarding CPU efficiency, the proposed system can generate features very quickly
and is only slightly slower than the most basic of the reference feature sets. On
the other hand, the feature extractor needs to be trained for each data set. While
this process is fast on small data sets such as GW, several hours are necessary for
PAR and IAM data sets. When DTW is used as classifier, this is a very large
overall overhead while for HMM the relative overhead is less important since the
classifier itself requires significant time to train.

While the results presented in this chapter are very satisfactory, several improve-
ments of the system are still possible. To see if the same set of learned features
could be successfully used with two different classifiers, the same parameters of the
model were used for both the DTW and the HMM classifiers. Since DTW proved
the least efficient of the two, the parameters were mostly tuned to work well with
DTW. It should be possible to optimize further the parameters for HMM in order
to obtain even superior results. Another possibility to improve the results further,
especially for the smaller GW data set, would be to augment the data set with
affine and elastic distortions to generate better features. Also, training the model
to reconstruct clean patches from some noisy images, could be a way to obtain
more robust features (Tang, Salakhutdinov, and G. E. Hinton, 2012) (Cho, 2013).
While DTW and HMM are both good classifiers for word spotting, they may not
be the most efficient models for the learned features. Indeed, recurrent models
such as the LSTM were shown to be better than HMM in some cases (Frinken
et al., 2012). Therefore, it would be interesting to test LSTM as classifier with the
automatically learned features. While it was seen that transforming the binary
images into grayscale images with a Gaussian filter could slightly improve the per-
formance, it would be even more interesting to work on real grayscale images if a
good word segmentation was available. Moreover, the stability of the system when
using grayscale images could also been improved. Finally, since the system is now
able to perform word spotting with good performance, it would be interesting to
develop an application or a web service from it and make it available to a larger
audience.
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Chapter 7

Auto-encoders

We know a lot of things, but what
we don’t know is a lot more

Edward Witten
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7.1 Introduction

This thesis is based on the predicate that the Restricted Boltzmann Machine
(RBM) and Convolutional Restricted Boltzmann Machine (CRBM) models are
well-performing models able to efficiently extract features from images when trained
in an unsupervised manner. However, these models are not the only ones that are
capable of automatically learning a new representation from data in an unsuper-
vised way. There are several alternatives. This chapter describes some of these
alternative models, namely the auto-encoders, and goes on to compare some of
them on a feature extraction task.

In essence, a RBM is an auto-encoder model, also called an auto-associator or
Diabolo network (Bengio, 2009; Rumelhart, G. E. Hinton, and Williams, 1988;
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Figure 7.1: Example of an auto-encoder neural network. The network is trained
as a standard neural network. Only the hidden layer is used for feature extraction.

G. E. Hinton and Zemel, 1994). These models are trained to encode the input in
some different representation and reconstruct the input from this learned represen-
tation. Therefore, the expected output is the input itself, no labels are necessary
for training. There are generally two parts to these models, the encoder network
and the decoder network. Once the full network has been trained, the encoder net-
work can be used to extract features from data. The learned representation needs
not necessarily to be smaller than the input representation. While this would
intuitively allow the auto-encoder learn the identity function as the internal repre-
sentation, it was shown that, in practice, an auto-encoder trained with Stochastic
Gradient Descent (SGD) could yield some useful representations, bigger than the
input (Bengio, LeCun, and al., 2007).

The simplest form of auto-encoder is a Multi-Layer Perceptron (MLP) with one
hidden layer, as shown in Figure 7.1. The network can be trained with standard
back propagation techniques using the input as the expected target. From this
simple form of auto-encoder, several variations can be derived. The principle can
also be applied to convolutional auto-encoders to reconstruct images by learning
convolutional filters instead of a flat representation (Masci et al., 2011). Convo-
lutional auto-encoders are generally learning better features on images and sound
data sets. Fully connected auto-encoders are very simple to implement since the
decoder layer is simply a fully-connected layer with transposed dimensions. For
convolutional auto-encoder, it is slightly more complicated. The transposed oper-
ation being the deconvolution can be implemented with some form of full convo-
lution (Noh, Hong, and B. Han, 2015). Single-layer models can also be composed
to create higher level representations. This can be achieved using two different
techniques (Bengio, 2009). Several simple models can be trained in a chain, each
reconstructing the representation of the previous one. It is also possible to create
a Deep Neural Network by adding more hidden layers before the representation
layer and the corresponding inverse layers after it.

A very successful technique for training auto-encoders is to corrupt the input and
training the network to reconstruct the clean input. These models are called De-
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noising Auto-Encoders (DAEs) (Vincent, Larochelle, Bengio, et al., 2008; Vincent,
Larochelle, Lajoie, et al., 2010). The goal is to make the features more robust by
not presenting them the real images. These models proved very efficient and are
able to learn very powerful representations. Since this does not change the model
itself but only the data on which it is trained, it is very straightforward to apply
this principle to any auto-encoder.

An alternative to denoising auto-encoders is to force the model to learn a sparse
representation of the input data. These models are called Sparse Auto-Encoders
(Olshausen and Field, 1997; Y.-l. Boureau, LeCun, and Ranzato, 2008; Ranzato
and LeCun, 2007; Doi, Balcan, and Lewicki, 2005). Generally, these models have
a larger representation than other models, but the units are activated only rarely.
These models are generally trained by adding a sparsity term to the loss function.

More recently, even more advanced models for auto-encoders have been proposed.
The Variational Auto-Encoder (VAE) is a special form of auto-encoder that learns
the distribution over the data and a set of latent variables (D. P. Kingma and
Welling, 2013; Rezende, Mohamed, and Wierstra, 2014). These models are very
good at generating samples from scratch or from corrupted inputs. The model
can also be adapted for semi-supervised learning (D. P. Kingma, Mohamed, et
al., 2014). Another successful variant of the VAE is the Conditional Variational
Auto-Encoder (CVAE) that takes advantage of side information such as labels
to improve the output representation (Sohn, H. Lee, and Yan, 2015). Another
powerful model is the Generative Adversarial Network (GAN) (I. J. Goodfellow
et al., 2014). In this model, two networks are trained by competing against each
other. The first model is trying to generate fake images that are able to fool the
second model which must decide if the input is real or not. This model is able to
generate very realistic images from simple labels. From this model, Adversarial
Auto-Encoder (AAE) can be derived (Makhzani et al., 2015; Radford, Metz, and
Chintala, 2015) and can learn very robust representations. Several attempts were
also made to combine the strengths of the VAE and GAN models (Mescheder,
Nowozin, and Geiger, 2017; Larsen, Sønderby, and Winther, 2015). Overall, these
two families of models and their combinations have achieved excellent performance
mostly in generating or distorting images and extracting robust features.

This chapter compares some of the simple approaches to feature extraction against
the RBM approach and summarizes the state of the RBM approach. More specif-
ically, dense and convolutional auto-encoders, deep and stacked auto-encoders,
hybrid auto-encoders and denoising auto-encoders are experimented with.

7.2 Experimental Evaluation

In the following sections, several approaches to automatic feature extraction learn-
ing will be compared to the approach based on RBM models. It is not a trivial
task to compare features together and evaluate them. We re-used the Keyword
Spotting experiment and the evaluation framework to compare the different fea-
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tures learned with auto-encoders. For this, each model learns features of the same
dimensionality and these features are passed to a simple Dynamic Time Warping
(DTW) classifier, for keyword spotting. Using a very simple classifier has the ad-
vantage that the features are compared as directly as possible. The DTW is used
with a Sakoe-Chiba band of 0.05 for each model. The George Washington data set
was selected for this task in to be able to test many feature sets in a reasonable
time. Features are learned directly from the patches of the George Washington
data set, using the first cross validation set. The evaluation is done using Average
Precision (AP) and Mean Average Precision (MAP), in two different scenarios.
The full details of the evaluation for keyword spotting are explained in detail in
Section 6.6.1.

The experiments were developed using the DLL framework. For reference and for
reproducibility of the results, the source code used to perform these experiments
is available online1. This includes the C++ code for each of the model for each
of the experiments as well as the necessary code for the data set loading and the
evaluation of the different features.

7.3 Dense Auto-Encoders

The first experiment that is done is to compare dense auto-encoders and RBM
models. For this, models with the same feature dimensionality are learned on the
same data and are compared.

A dense auto-encoder model is a very simple neural network. It has two fully-
connected layers, the second layer being the transpose of the first one, as shown
in Figure 7.1. The tested networks are all using sigmoid activation functions. The
first layer has 𝑁 hidden units and the second layer has the same number of hidden
units as the first layer has input units. It is trained exactly as a standard Artificial
Neural Network (ANN). This model is trained with Mini-Batch gradient descent,
with momentum and L2 weight decay. Each model is trained for 10 epochs. The
input data set is shuffled before each epoch. The RBM has only one layer, with
𝑁 hidden units. It is trained with Contrastive Divergence (CD) for 10 epochs.
It is also trained with momentum and L2 weight decay. Each epoch is trained
with a different random permutation of the inputs. For both models, it has been
necessary to reduce the learning rate as 𝑁 increases.

The results for this experiment are presented in Figure 7.2, for both scenarios.
There are some significant differences between the two models. The most impor-
tant one is when generating only 10 features from the 800 input features. In that
case, the dense auto-encoder excels while the RBM seems to fail learning a good
representation. One possible explanation for this could be that the RBM tries to
learn the input distribution, not only the reconstruction. It is possible that 10
features are not enough for this task. Overall, the dense auto-encoder has a better

1https://github.com/wichtounet/word_spotting
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Figure 7.2: Comparison of Dense Auto-Encoders and RBM on a Keyword Spotting
task, using the George Washington data set.

performance for a number of features below 200. For larger number of features,
the RBM is always better. Overall, if the average performance over the number of
features is considered, the RBM is 7.2% better in the global scenario and 16.9%
better in the local one.

In practice, it is generally more powerful to use neural networks with several layers
in order to extract more abstract features at each layer. The same observation
stands true for auto-encoders. There are two different models for auto-encoders
with multiple layers. The first idea is simply to add more encoding and decoding
layers into the network, creating a deep auto-encoder. It is also possible to follow
the RBM model and train auto-encoders independently one after another in a
layerwise fashion, being a stacked auto-encoder. Both models are illustrated in
Figure 7.3.

To compare a model with several RBM layers, also called a Deep Belief Network
(DBN) and multi-layer auto-encoders, the same experiment was run again with
a first intermediate layer of 200 units. The three models are trained in a similar
manner as before. Another possibility, not explored here, is to combine both
approaches by initializing the weights of a deep model using its stacked version
(or RBMs) and then training again the deep model (Vincent, Larochelle, Lajoie,
et al., 2010).

The results can be seen in Figure 7.4. These results are very interesting on several
points. First, it can be observed that the stacked auto-encoder is producing better
features than the deep auto-encoder, by about 30% in the global scenario and
by about 21% in the local one. There are several possible explanations for this
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(a) Deep Auto-Encoder (b) Stacked Auto-Encoder

Figure 7.3: Comparison of Deep Auto-Encoder and Stacked Auto-Encoder

observation. First, it is generally easier to train several small models than a large
model. Moreover, while it would make sense that combining the layers together
would improve the results, having them separated can prevent too much adaptation
of the layers to the input data, making the learned features more generic. Another
advantage is to help the system to create multiple layers of abstraction, by creating
good features at each level. This is not necessarily the case when deep neural
networks are trained. When comparing the DBN and the stacked auto-encoder,
the same effect with 10 features can be observed as in the previous example. The
DBN shows poor performance with few features. By increasing the number of
features, the DBN is able to extract features, but is worse in the global scenario
(by about 11%) and better in the local scenario by about 9%. On the other side,
the stacked auto-encoder model fails early on for large numbers of features. When
the single-layer models are compared with the two-layer models, the deep model
does not improve over the single-layer and even reduces the performance in the
local scenario. On the other hand, the stacked model significantly improves the
performance of the auto-encoder. For the RBM, the improvements are significant
as well but smaller than for the auto-encoder. It must also be taken into account
that the input samples are not very complex and as such may not profit much
from deep features.

Overall, it seems like both models are performing well on this task and both have
different strengths, with an advantage for the RBM for single-layer model and for
the stacked auto-encoder with two layers. It is also observed that stacking several
auto-encoders one after another can produce better results than a multi-layer auto-
encoder. Being trained in a layer-by-layer manner makes the RBM faster to train,
by about 20% in this case. It can also be seen that RBMs are performing better
than auto-encoders when the number of features is large. On simple single-layer
models, the training is similarly simple for both models. When several layers
are used, RBM training can be cumbersome due to the high number of hyper
parameters involved. Indeed, the number of parameters is linearly dependent on
the number of RBMs used. While it is also possible to assign different learning
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Figure 7.4: Comparison of Deep and Stacked Dense Auto-Encoders and DBN on
a Keyword Spotting task, using the George Washington data set.

rates to different layers in an ANN, this is rarely done and as such makes it easier
to train multi-layer neural networks than stacked RBMs. When the auto-encoders
are stacked, the model becomes as complicated to train as the DBN model.

7.4 Convolutional Auto-Encoders

The second experiment that is performed is to compare models based on the Con-
volutional Auto-Encoder (CAE) and CRBM models. Again, models with the same
architecture will be trained for the two different techniques on the same data and
then compared against each other.

The convolutional auto-encoder has two layers like the dense auto-encoders, but the
two layers are different. The first layer is a standard convolutional layer while the
second layer is a so-called deconvolutional layer. The first layer performs a valid
convolution and the second performs a full convolution, effectively getting back
to the original dimensionality. This can be observed in Figure 7.5. This model is
trained with standard Mini-Batch gradient descent, with the same parameters and
refinements as the dense auto-encoder (see Section 7.3). The CRBM is simpler,
having only one layer. It is also trained using the same techniques seen in the
previous section. For both models, the size of the kernel has been fixed to 17x17.
While this is a rather large kernel size, it was necessary in order to reduce the
dimensionality enough for the DTW to give adequate results. Different numbers
of filters (𝐾) are tested for each model. The learning rates had to be adapted for
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Figure 7.5: Example of a convolutional auto-encoder neural network. The network
is trained as a standard neural network. Only the first layer is used for feature
extraction.

the different numbers of filters. Moreover, the learning rate for the CRBM had to
be set one order of magnitude lower than for the auto-encoder.

Figure 7.6 presents the results for this experiment, for both scenarios. The results
are only good for small numbers of kernels. This confirms the fact that DTW is
not able to handle too many features. There are some very significant differences
between the models. In both scenarios, the CRBM model is superior to the auto-
encoder model. In the global scenario, it is more than 90% better while it is only
12.82% better in the local scenario, when considering the average performance over
different number of features. This shows a better generalization of the features for
the CRBM in that case.

Since DTW is expecting features with small dimensionality, another tool to im-
prove the results is to use pooling to reduce the size of the features and to improve
their generalization. For convolutional auto-encoder, this means adding a max
pooling layer, followed by an upsample layer. This means already four layers in
the network. For the CRBM, there are two choices. The first is simply to add a
max pooling layer after the CRBM layer. In this case, the training has no notion
of pooling at all, the same features will be generated as previously, but they will be
pooled. It is also possible to integrate pooling in the training using Probabilistic
Max Pooling (PMP). Both models will be compared here against the auto-encoder.
Again, each system will have the same architecture and different numbers of filters
will be tested. The size of each kernel is kept to 17x17 and the features are pooled
using a 2x2 kernel, with a stride of two, effectively dividing the number of features
by four.

Figure 7.7 shows the results obtained when pooling the features. To see if adding
pooling inside the network helps learning in the first layer, the features of both
the first layer (CAE-L1) and the second layer (CAE-L2) of the auto-encoder are
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Figure 7.6: Comparison of Convolutional Auto-Encoders and CRBMs on a Key-
word Spotting task, using the George Washington data set.
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Figure 7.7: Comparison of Convolutional Auto-Encoders and CRBMs, with pool-
ing, on a Keyword Spotting task, using the George Washington data set.
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Figure 7.8: Comparison of Deep Convolutional Auto-Encoders and Deep CRBM
on a Keyword Spotting task, using the George Washington data set.

evaluated. Indeed, it can be observed by looking at CAE-L1, that the results are
significantly better than the results obtained by CAE in the previous experiment.
This means that not only does adding a pooling layer improve the quality of the
features, it does also strongly improve the learning of the previous layers. However,
for DTW, the features after pooling (CAE-L2) are stronger than the unpooled
features (CAE-L1). When comparing CRBM-MP and CRBM-PMP, it can be
observed that the latter is less efficient. Although it has very strong features with
small number of filters, it fails very quickly as the number of filters increases. In
practice, during this thesis, it has been observed several times that the use of PMP
decreased the stability and was only really interesting when sparsity regularization
was applied to binary hidden features. The features learned by the CRBM-MP
system and the CAE-L2 features are almost equivalent. CAE-L2 is about 6%
better in the global scenario while CRBM-MP is about 4.5% better in the local
scenario. The features learned by CRBM-MP are more stable than the one learned
by CAE-L2, but the performance peaks are higher for the latter.

As for dense auto-encoders, it is also possible to have multi-layer convolutional
auto-encoders. Again, there are two possible models, deep and stacked (See Sec-
tion 7.3 for details). The CRBM model can also be stacked in the Convolutional
Deep Belief Network (CDBN) model. The first experiment with two layers is using
9x9 kernels in both layers and no pooling. The first convolution layer is set to have
6 filters. The number of filters of the second layer will change from 1 to 10 and
the same training parameters as before are used.

Figure 7.8 presents the performance of the three deep models. Overall, the results
obtained with these models are not very good. They are almost comparable to
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Figure 7.9: Comparison of Deep Convolutional Auto-Encoders and Deep CRBM
on a Keyword Spotting task, with pooling layers, using the George Washington
data set.

the results with a single layer and no pooling. Contrary to the previous deep
results, the stacked auto-encoder performs significantly worse in both scenarios
than the deep auto-encoder. In this experiment, the deep CRBM model does not
perform very well, being 6.3% worse in the global scenario and 15% worse in the
local scenario. It is only slightly better than the stacked auto-encoder. Another
important difference between the models is the time necessary to train. Indeed,
it is significantly faster to train the CDBN model than the deep auto-encoder. It
takes almost twice the time to train it. The stacked auto-encoder is also slower
than the CDBN but by a small margin of around 15%.

Since max pooling was shown to improve the results of single-layer models, the
next experiment includes pooling layers in the three deep models. Again, both
the CRBM model with max pooling and the CRBM with PMP are compared.
The first layer has six 9x9 filters and the second layer has a variable number of
3x3 filters. Both convolutional layers are followed by a max pooling layer with a
ratio of two in each dimension. With this configuration, the deep convolutional
auto-encoder is composed of eight layers.

Figure 7.9 presents the performance of these four models. These deep convolutional
models achieve the best performance observed in this chapter. They are reaching
excellent spotting performance. Contrary to the deep dense models, the stacked
model does not perform significantly better than the deep model. Both models are
performing almost equivalently. Indeed, it is worse by 1.7% in the local scenario
and slightly better in the global scenario (by 1.1%). However, the performance of
the deep model is more stable over different configurations. Secondly, the CRBM
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model with standard max pooling performs significantly better than the CRBM
with PMP, by about 15% in the global scenario and 4.7% in the local one. Both
the deep auto-encoder and the CDBN with max pooling are performing very well
on this experiment. The deep auto-encoder is performing slightly better in the
local scenario (by about 1.6%), while the CDBN is about 2% better in the global
scenario. However, we note that the highest peaks of performance are achieved by
the deep CAE model.

Overall, both the CAE and CRBM models are achieving very good performance for
extracting features from images. In this experiment, pooling was shown to be very
important to achieve maximum performance. This helps learning better features
for the auto-encoders and also helps DTW by significantly reducing the number
of features to compare. When multiple-layer models are used, the performance
can be significantly improved. It was seen that the stacked and deep models for
CAE performs about the same. It was also seen that the CRBM model with
PMP performs worse than the CRBM model with simple max pooling layers.
The CRBM models are generally more stable than the CAE models over different
configurations. Finally, the best results were observed for the deep CAE model.

7.5 Hybrid Auto-Encoders

In the two previous sections, dense and convolutional auto-encoders have been
experimented with. In standard neural networks, convolutional layers are often
followed by a fully-connected layer to perform classification. It is also possible to
build an auto-encoder using both kinds of layers, using the same architecture. We
call this an hybrid auto-encoder in this section.

The first hybrid model uses a convolutional layer with six 9x9 kernels, followed by
a fully-connected layer with variable number of hidden units. Both the deep and
stacked versions of the auto-encoders are tested.

The results are presented in Figure 7.10. In the global scenario, the stacked model
is stronger than the deep model, while it seems slightly worse in the local scenario.
Moreover, the deep model seems more unstable with different configurations and
was more delicate to train. As for the hybrid DBN, it is significantly worse in the
local scenario, by about 3.8% and slightly better in the global scenario by about
1.2%. Overall, the results are rather good, better than using only the convolutional
layer and better than the dense models.

The second hybrid experiment still uses a first convolutional layer with six 9x9
kernels, but it is followed by a max pooling layer with a pooling ratio of two in
both dimensions. Again, it is followed by a fully-connected layer with variable
numbers of hidden units. For the CRBM model, both a standard max pooling
layer and PMP are tested.

The results are presented in Figure 7.11. Overall, the results achieved are very
good. The deep CRBM model with max pooling layer is the worst model in this
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Figure 7.10: Comparison of Deep and Stacked Hybrid Auto-Encoders and Hybrid
DBN on a Keyword Spotting task, using the George Washington data set.
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Figure 7.11: Comparison of Deep and Stacked Hybrid Auto-Encoders and Hybrid
DBN, with pooling, on a Keyword Spotting task, using the George Washington
data set.
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experiment, being 11% worse in the global scenario and 12% in the local scenario
than the CRBM with PMP. The stacked model is significantly worse in the global
scenario but slightly better in the local one. Overall, the best model is the CRBM
with PMP which is very slightly better in the global scenario and about 1.2%
better in the local one than the second best model. The two hybrid models based
on RBM have proved more difficult to tune than the standard models, especially
with respect to the learning rate. They produce results with large differences
between different training parameters.

Overall, both types of models are doing a good job on these hybrid experiments.
The hybrid model with max pooling is able to achieve excellent performance. The
CRBM with PMP is proving very efficient in this particular case. While the RBM
family has generally better overall performance, it does not have the same peak
performance as the simpler auto-encoder. Moreover, it is also more difficult to
train the RBM models due to more parameters to configure. Nevertheless, their
training remains significantly faster than standard auto-encoders.

7.6 Denoising Auto-Encoders

A simple way to improve the robustness of the features learned by an auto-encoder
is to make them reconstruct a clean image from noisy images. The goal is to im-
prove the robustness of the features and prevent weak features that are too much
coupled to the input images. This technique can easily be applied to the training
of an auto-encoder since it does not change the training significantly. The recon-
struction is done from a noisy image instead of doing it from the clean image.
It is important that the loss is computed using the clean image and the recon-
structed image. This process is not the same as learning Image Denoising. Indeed,
in this configuration, the model will be trained with potentially new images at
each epoch. Although RBM and derived models are able to learn Image Denoising
problems (Tang, Salakhutdinov, and G. E. Hinton, 2012; Cho, 2013), they are not
always well suited to be trained as denoising auto-encoder. Indeed, their training
is already stochastic, via the Bernoulli sampling and already accounting for noise.
Therefore, adding more noise to the training may not be as efficient as it is on
standard auto-encoder and may be detrimental. To compare how both models
are impacted by applying this technique, several models are trained with varying
amount of noise in the input. The noise model that is used is simply to have a
probability to set a feature to zero in the input, this probability being the noise
level.

The first model that is being trained is the single-layer dense model from Sec-
tion 7.3. The model with 50 hidden units was selected since both models were
very close on this configuration. The model is trained again using the same pa-
rameters with some level of noise.

Figure 7.12 shows the results of this first denoising experiment. When no noise is
applied, the results are almost similar, as was already seen previously. However,
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Figure 7.12: Comparison of Denoising Dense Auto-Encoders and Denoising RBM
on a Keyword Spotting task, using the George Washington data set.

when some noise is applied, the differences between the two models are rather
significant. Indeed, while the RBM is able to withstand about 15% of noise and
manages a small improvement in the local scenario, the auto-encoder has very
good results up to 35% of noise. Moreover, the improvements for the auto-encoder
are more significant, almost 10% in the local scenario and about 2.5% in the global
scenario. In this experiment, the denoising auto-encoder is clearly better than the
RBM.

The second model that is tested is the single-layer convolutional model with pooling
layer from Section 7.4. The first layer has been fixed to five filters. Different
amounts of noise are tested.

The results are presented in Figure 7.13. The results are showing several very inter-
esting trends. It can be observed that convolutional models are more resistant to
noise and can handle up to 50% noise without too much reduction of performance.
This is especially true for CRBM models which are improving quite significantly
until the end. Overall, the CRBM model with standard pooling is the best model
in this case, especially in the global scenario. Very interestingly, the CRBM model
with PMP is taking heavy advantage of the noise. It is starting with very low
performance without noise, but its performance is improving steeply as the noise
level increases. For the highest level of noise, it performs as well as the CRBM
model with standard pooling.

The last denoising model is the deep model with pooling layers from Section 7.4.
The first layer has six filters, while the second one has been fixed to five convolu-
tional filters. Different amounts of noise are tested. For the stacked models, the
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Figure 7.13: Comparison of Denoising Convolutional Auto-Encoders and Denoising
CRBM, with pooling, on a Keyword Spotting task, using the George Washington
data set.

noise is applied to the input layer of each stacked model.

Figure 7.14 presents the results for this last experiment. First, it can be observed
that the stacked model performs worse than the deep model (results 20% and
25% of noise notwithstanding). The stacked model has noise before each of the
convolutional layers while the deep model only sees the noise once. It seems that
applying noise in the inner layers is detrimental to the performance for this model
and task. This may also explain the fact that the deep auto-encoder performs
better in this situation than the deep CRBM. Moreover, the CRBM with PMP
does not perform as well as it did in the previous experiment in which it was shown
to improve significantly with high level of noise. Again, this is due to the noise
applied at both layers.

It is clear that corrupting the samples during the training can significantly improve
the quality of the features generated by an auto-encoder. While this does not
improve the performance of a fully connected RBM, it does improve significantly
the performance of the CRBM model, especially when using PMP. When models
are stacked, noise applied to the second layer seems detrimental to the quality
of the features for this task. However, it improves the performance of the deep
model, probably because the noise is only applied to the input and not in front
of each stacked model. It would be interesting to compare the difference with the
noise only applied to the first stacked model.
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Figure 7.14: Comparison of Denoising Deep Convolutional Auto-Encoders and
Denoising Deep CRBM on a Keyword Spotting task, with pooling layers, using
the George Washington data set.

7.7 Results

For an overview, Table 7.1 presents a summary of all the results acquired during
this experiment. Overall, the best absolute result has been achieved by models
based on auto-encoders. The best Average Precision has been achieved by the
Deep convolutional model with max pooling (62.6%). The best Mean Average
Precision is obtained with the Denoising Deep Convolutional model (72.7%). The
best RBM configurations are not far behind with, respectively for AP and MAP,
the denoising dense model and the denoising convolutional model (59.5%) and the
denoising deep convolutional model (70.3%).

Although the RBM and CRBM models are outperformed in terms of absolute
performance, they generally had better overall performance when considering the
average performance over different configurations. This is important in practice
when the parameters are not intensively tuned for a specific data set.

In the Keyword Spotting experiment (See Chapter 6), better results were obtained
for the CRBM models. Indeed, more configurations were explored and more ad-
vanced techniques such as sparsity and Rectified Linear Unit (ReLU) features were
experimented with. Therefore, it is also possible that the results obtained in this
present experiment can be further improved.
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Table 7.1: Mean Average Precision (MAP) and Average Precision (AP) for each
different model tested during this experiment. Each model includes the best result
obtained with the RBM model and the equivalent auto-encoder model. A bold
number indicates the best for each experiment.

AE RBM
Model AP MAP AP MAP
Dense 55.3 64.0 53.4 63.5
Deep Dense 54.1 64.4 55.0 61.3
Convolutional 42.6 57.0 46.8 59.7
Convolutional Pooling 54.9 65.2 54.7 64.2
Deep Conv. 52.1 63.7 54.4 61.9
Deep Conv. Pooling 62.6 71.8 59.3 68.9
Hybrid 52.7 63.1 50.6 61.6
Hybrid Pooling 57.0 68.6 58.5 67.9
Denoising Dense. 53.6 65.2 59.5 60.6
Denoising Conv. 54.5 67.7 59.5 69.0
Denoising Deep Conv. 61.3 72.7 59.0 70.3
Best Result 62.6 72.7 59.5 70.3

7.8 Summary

In this chapter, the features generated by RBM models were compared to the fea-
tures coming from auto-encoders based on neural networks. Overall, both models
have good performance. In the case of single-layer dense models, the RBM proved
very powerful but was outperformed by the stacked auto-encoder when multiple
layers are used. The CRBM has shown better overall performance and resilience
to different configuration than the convolutional auto-encoder. Nevertheless, the
highest performance was observed with the latter. The same was observed for
hybrid models. The denoising auto-encoder showed better performance than the
fully-connected RBM. However, the CRBM was significantly better and more re-
silient to noise than the single-layer convolutional layer. But again, the highest
performance was achieved with the deep denoising convolutional auto-encoder.

In general, RBM models are more complicated to train than the equivalent auto-
encoder. CD training is a slightly more complex training method than SGD and
has more hyper parameters to tune. Moreover, for some of the experiments, it was
necessary to use different training parameters for different layers of the network.
This was not necessary for training the auto-encoders. Also, the RBM models
are apparently more sensitive to the chosen hyper-parameters and to the random
initialization. Another advantage of the auto-encoders, not directly related to this
experiment, is that they are trained in the same manner as classification neural
network. Therefore, it is easy to find support for auto-encoders in most of the
existing machine learning frameworks. This is not the case for RBM for which the
support is rather poor.
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One advantage of the RBM models over auto-encoders is the significantly faster
training. This is especially true for deep models. A deep CAE with two layers
and pooling is made of eight layers. This means that significant time will be spent
forwarding the data to the end of the network and then back propagating the error
to the first layer. This is not the case in the CRBM where backpropagation only
occurs inside a layer. For large deep CAE models, the equivalent CDBN was more
than three times faster to train. The stacked CAE model alleviates a part of this
issue since back propagation does only go through one layer. But there are still
more layers and this makes CD training more efficient than SGD.

The main goal of this chapter was to compare the capabilities of RBM models and
standard auto-encoders. Although keyword spotting was selected as experiment,
this chapter was not meant as an extensive exploration of the use of auto-encoders
for keyword spotting. Indeed, in practice, other parameters would have been nec-
essary to test such as learning sparse representation and other types of units such
as ReLU. Moreover, the chosen architectures were not tuned as much as it would
be necessary to obtain the very best results for the task. Nevertheless, excellent
spotting results were achieved, even with this relatively limited exploration of the
parameters.

The comparison between the two families of model is not extensive and is only
performed on one task and one data set. The results could differ for other tasks
or different data sets. Both families of models were also compared several times
in different research work. Larochelle et al. showed several examples in which
stacked RBM models were outperforming stacked auto-encoders, for unsupervised
pretraining (Larochelle, Bengio, et al., 2009). For semi-supervised learning, Ehran
et al. observed qualitatively similar results between denoising auto-encoders and
RBMs (Erhan, Bengio, A. Courville, Manzagol, et al., 2010). Coates et al. ob-
served slightly better performance for single-layer sparse auto-encoder compared
to sparse RBM on two different data sets for object recognition (Coates, H. Lee,
and Ng, 2010). Vincent et al. showed almost similar performance for feature
learning for a DBN and a Stacked Auto-Encoder (SAE) when denoising was used
to train both models (Vincent, Larochelle, Lajoie, et al., 2010). Cho performed
a comparison of DAE and RBM for image denoising (Cho, 2013) and found that
RBMs were more robust to noise, achieving better performance when the noise
level was high but being outperformed on small noise-level images.
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Chapter 8

Conclusion

All we have to decide is what to do
with the time that is given to us

J.R.R. Tolkien
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8.1 Synthesis

In this thesis, the use of Deep Learning techniques to automatically extract features
from images in an unsupervised manner was investigated. More specifically, the
research focuses on the original branch of Deep Learning, the so-called "Hinton
approach", using the Restricted Boltzmann Machine (RBM) and Convolutional
Restricted Boltzmann Machine (CRBM) models. This approach was validated us-
ing several experiments in order to observe its effectiveness and also the associated
difficulties.

In the Introduction, several scientific research questions were presented. Our con-
tributions in regard to these questions are summarized below:

1. The first question concerned the advantages of unsupervised pretraining in
the context of classification problems.
It was seen during our experiment on Sudoku recognition that unsupervised
pretraining acted as a strong regularizer. It was shown that the training
was much faster after pretraining than it was without. Moreover, it was also
observed that pretraining was avoiding overfitting in early stages of training.

2. The second question was whether pretraining was acting in the same way for
dense layers and for convolutional layers.
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On a digit recognition task, it was observed that there were some significant
differences in how unsupervised pretraining was impacting the training of
fully-connected layers and convolutional layers. Indeed, the regularization
effect is not significant for convolutional layers. However, it can clearly be
observed that it provides a very good initialization of the weights that allows
to significantly speed up the training of the network.

3. The third question was about the advantages of automatic feature learning
when compared to handcrafted features.
On a keyword spotting task on handwritten historical documents, a convolu-
tional feature extractor trained to automatically learn features from patches
of word images was able to outperform three different sets of handcrafted
features. The results were confirmed on three different data sets. However,
even if the features are learned automatically, it is still necessary to configure
a large number of parameters and good results were requesting a significant
amount of tuning.

4. The next one concerned the difficulty of generating features for basic classi-
fiers.
When working with basic classifiers such as the Dynamic Time Warping
(DTW) for keyword spotting, the dimensionality of the features has been
a very important factor. Moreover, the normalization of the features has
also been a factor of significant importance. Nevertheless, it was shown that
with sufficient tuning of the network architecture and training parameters, it
was possible to generate good features for basic classifiers and achieve better
performance than the reference feature sets on several data sets.

5. The fifth question was whether it was possible to use the same features with
different classifiers.
When using the same feature extractor model on two very different classifiers,
DTW and Hidden Markov Model (HMM), it was shown that it was possible
to achieve very good performance in both cases. This is showing that the
features that can be learned with these models are rather generic. This was
made without any changes to the architecture or training parameters between
the two classifiers. However, different classifiers have different strengths and
weaknesses and therefore it is very difficult to optimize for very different
classifiers without losing overall performance.

6. The last question concerned the difference between the RBM and CRBM
approach for feature learning compared to different alternatives and more
specifically standard auto-encoders.
On a keyword spotting task, the performance of RBM models and regular
auto-encoders have been compared. This showed an advantage for RBM
models when using a single layer and an advantage to deep auto-encoder
models when several layers were used. This also showed that it was more
complex to train and tune an RBM than a simple auto-encoder. Once care-
fully tuned, both models were capable of generating very good features and a
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large number of models can be composed to generate different features more
suited to a specific task.

The contributions regarding the specific questions can be summarized as such:

1. The first question was whether a single network can learn from two different
types of inputs in the context of Sudoku recognition.
By using a single network to learn both handwritten and computer generated
digits on a Sudoku recognition task, it was observed that it was not necessary
to separate these inputs before training. Using a single network with enough
learning capacity is more than enough for this type of dual inputs.

2. The second specific question was whether features learned on grayscale im-
ages are better than features learned on binary images in the context of
handwritten Keyword Spotting.
Since no grayscale segmented word images were available for training our
model, it was trained on binary images on which a Gaussian blur filter was
applied, making them artificially grayscale. When using DTW as a classifier,
the performance of the system was significantly improved. However, when
using HMM, the performance was improved in one scenario and reduced in
another. Although there is potential in learning from grayscale images rather
than binary images, the learning process using Gaussian visible units is very
unstable and needs lower learning rates to work.

3. The last specific questions addressed the performance of the framework de-
veloped during the course of this thesis in comparison to popular machine
learning frameworks.
On four different machine learning experiments, the training quality of our
developed framework (DLL) proved to be comparable to the other five tested
frameworks in terms of accuracy. Moreover, it was also the framework with
the most features for RBM and CRBM training and usage. Nevertheless, the
framework clearly lacks features for regular neural network training. On the
performance side, it is among the fastest on Central Processing Unit (CPU),
thanks to many processor and memory optimizations that were included in
the developed However, it is not taking advantage enough of the Graphical
Processing Unit (GPU), for which few optimizations were included.

To summarize, it was found during this research that it is possible to generate very
robust features from images. On several experiments, the features learned by the
trained models were superior to handcrafted features. Moreover, learned features
have several advantages over them. Indeed, as they are learned on data, they are
easier to adapt to different data sets. Finally, we believe that there is still a large
potential for unsupervised learning for feature extraction, especially when working
on images.

More specifically, this research has shown that the RBM model and its variants
were good candidates to learn a feature extractor on several experiments. We also
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performed a comparison of RBM with auto-encoders on a feature extraction task
using the same data set. The auto-encoders show advantages and disadvantages
over RBM. They shown, on that specific data set and when using DTW as a
classifier, slightly better overall performance than RBM and revealed easier to
train with less hyper-parameters. However, RBM models revealed more stable in
terms of performance across larger rangers of model architectures making them
good candidates in context of of shared configurations. Moreover, while Deep
Learning via RBM and CRBM (the "Hinton approach") was the new trend for a
few years after 2006, it was quickly superseded by new generations of Convolutional
Neural Networks and new techniques for training larger and larger models. These
models have new capabilities and are easier to train, especially since they do not
require semi-supervised training. Moreover, it should also be mentioned that while
unsupervised pretraining helps both in regularizing the training and in providing
a good initialization of the weights, it also increases the complexity of training
the network. Nevertheless, it was shown that for several problems, unsupervised
pretraining was still useful. Indeed, for problems with a small amount of available
labeled data, the use of unlabeled data which usually comes in large quantities
can still greatly improve the final results. However, problems with large amount
of labeled data many not anymore benefit from unsupervised pretraining.

8.2 Perspectives

A usable and general-purpose framework was developed during the course of this
research. Although it is ready to be used by other researchers and compared
well to other popular machine learning tools, more work is necessary in order to
make it more competitive. While its RBM and CRBM support is excellent, it
would be necessary to enhance its general neural network learning facilities, for
instance adding Batch normalization or supporting a wider range of activation
functions. While the framework supports a large range of feed-forward neural
networks, support for Recurrent Neural Networks (RNNs) such as Long Short
Term Memorys (LSTMs) would also be a great advantage. It would also be very
important to make better use of the GPU to accelerate training and be more
competitive in this area. Moreover, making the framework easier to use for the
research community and expanding its documentation would also be necessary.

Regarding the Sudoku experiment, several improvements would still be necessary
to complete it. Indeed, the detection process is still very complicated in terms
of the used algorithms and its performance are not highly satisfactory. Since
the classification model is trained on the detect images, it is important that the
detection are as accurate as possible. It would be more adequate to use a learning
approach for the detection as well.

The keyword spotting results could also be improved. It was shown that auto-
encoders are also very good candidates to generate features for this task on the
George Washington data set when using DTW. It would prove highly interesting to
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complete this evaluation with several data sets and different classifiers. Moreover,
it would also be very interesting to use auto-encoders to their full extent and fine-
tune the architecture to use them instead of the CRBM to see if better performance
can be obtained. Fine-tuning the system for the HMM classifier would also surely
to better final results. Moreover, instead of using a patch-by-patch approach for
feature extraction, a holistic approach could also greatly improve the performance,
but such holistic features are significantly more difficult to generate with these
techniques, especially considering the dimensionality and variability of the images.

If we may now draw a final word, we observed in this thesis and through the work
of many other researchers that machine learning techniques have grown more and
more powerful over the last decade. Big steps have been taken with many new
techniques such as deep networks trained layer-by-layer for feature extraction and
approaches that have allowed to reach robustness by incorporating different gran-
ularities of information. However, while such systems are achieving outstanding
results, they have also grown more and more complex. For solving a given task, a
researcher is now overwhelmed by the choice of different model families with few
insights on which one to pick. Once a model is chosen, there is also a large number
of hyper-parameters to tune to reach the best results. The community is using
more and more the term cooking to express this frequent random exploration of
models and associated hyper-parameters. Along the work undertaken in this thesis
and through discussions with colleagues of research, we could observe that, for a
given task, the cooking time is increasing while our understanding of what is going
on in the models is decreasing. Often, the reasons why a given model is superior
to another are not especially clear. Nevertheless, let’s see the optimistic side of
this : it will surely trigger new research thesis in the direction of simplification
and interpretability of deep approaches.
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Appendix A

Detailed Performance Analysis

Premature optimization is the root
of all evil

Donald Knuth
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A.1 Introduction

This appendix presents detailed results about some performance benchmarking
that has been performed during the course of this thesis. The performance of dif-
ferent implementations of the valid and full convolution operations is compared in
the first two sections. Then, the performance of Graphical Processing Unit (GPU)
implementations is compared to the performance of optimized Central Processing
Unit (CPU) implementations.
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A.2 Configuration

All the results presented in this chapter have been computed on a Gentoo Linux
machine, on a Linux kernel 4.4, with 12 GB of RAM, running an Intel® Core™

i7-2600. The processor is running at a frequency of 3.40GHz (CPU frequency
scaling has been disabled for the purpose of these tests). Both Streaming SIMD
Extensions (SSE) and Advanced Vector eXtensions (AVX) were enabled on the
machine. BLAS operations are executed with the Intel® Math Kernel Library
(MKL). The GPU used for the benchmarks is a Nvidia Geforce GTX 960 card.
This is a consumer desktop card, that is especially optimized for single-precision
workloads. CUDA 8.0.44 was used as well as CUDNN v5.

The tests were written in C++ using our own libraries: Deep Learning Library
(DLL)1 and Expression Templates Library (ETL)2 (See Chapter 4 for details).
Each program has been compiled with GNU Compiler Collection (GCC) 4.9, with
compiler flags selected for maximum native performance.

A.3 Valid Convolution

Convolution operations are known to be computationally very heavy and highly
memory-bound. A standard implementation of a valid convolution is easy to de-
velop but is rarely efficient enough for use in a Convolutional Neural Network
(CNN) or a Convolutional Restricted Boltzmann Machine (CRBM). The first way
to come around this issue is to use a vectorized implementation of the algorithm to
perform several floating point operations in one CPU cycle. The second possible
optimization is to reduce the convolution operation to a General Matrix Multi-
plication (GEMM) operation by rearranging the input matrix (see Section 4.4.2).
Table A.1 shows the performance of these different versions for a single-precision
valid convolution. The vectorized convolution is always faster than the other imple-
mentations. The fact that the GEMM implementation is slower than the vectorized
version (and sometimes slower than the standard version) comes from the overhead
of the matrix rearranging and from the fact that this computes a vector-matrix
multiplication rather than a matrix-matrix multiplication. This can also be ob-
served by the very small difference between the different GEMM implementation.
Indeed, if the bulk of the computation was done inside the matrix multiplica-
tion, the difference would be much larger between naive matrix multiplication and
the MKL implementation. Moreover, the parallel matrix-matrix multiplication is
slower than the serial version.

In practice and especially for neural network training, a single image is almost
always convolved with several kernels and the results are either summed or all
kept, depending on the situation. The reduction to the multiplication becomes
more interesting since the slow matrix transformation for rearranging the input

1https://github.com/wichtounet/dll/
2https://github.com/wichtounet/etl/
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Table A.1: Performance of a single-precision valid convolution, in microseconds. A
is the naive matrix multiplication, B is the MKL version and C is the parallel MKL
version. The speedup is comparing the GEMM(B) version with the Vectorized
version. The Vectorized version uses SSE and AVX to perform up to 8 single-
precision floating points in one CPU cycle.

Image 12x12 16x16 16x16 28x28 50x50 128x128 128x128 256x256
Kernel 5x5 5x5 9x9 9𝑥9 17x17 17x17 31x31 31x31
Standard 1.686 3.710 4.594 28.236 295.778 3207 8154 43471
Vectorized 0.805 1.651 1.229 9.067 66.045 694 1841 10660
GEMM(A) 1.732 2.563 5.253 15.741 174.217 2930 13253 71439
GEMM(B) 1.664 2.162 4.666 13.317 156.708 2884 12946 67289
GEMM(C) 1.713 2.554 5.111 23.750 153.984 3034 13815 66949
Speedup 0.481 0.744 0.253 0.690 0.430 0.210 0.131 0.149

Table A.2: Performance of a single-precision valid convolution of 1 image with 100
kernels, in milliseconds. The speedup is comparing the GEMM(C) version with
the Vectorized version. The Vectorized version uses SSE and AVX to perform up
to 8 single-precision floating points in one CPU cycle.

Image 12x12 16x16 16x16 28x28 50x50 128x128 128x128 256x256
Kernel 5x5 5x5 9x9 9𝑥9 17x17 17x17 31x31 31x31
Standard 0.953 2.126 2.040 12.653 82.027 889.029 1527 8075
Vectorized 0.081 0.179 0.196 0.964 6.621 70.181 188.208 1062
GEMM(A) 1.561 1.633 1.629 2.131 7.351 67.983 174.021 921
GEMM(B) 0.014 0.026 0.039 0.181 2.290 19.818 55.596 293
GEMM(C) 0.009 0.014 0.029 0.102 0.766 9.266 25.911 119
Speedup 9 12.78 6.758 9.45 8.643 7.574 7.263 8.924

only needs to be done once for the image and can be used for several kernels.
Moreover, a single matrix-matrix multiplication is performed per image instead of
one inefficient vector-matrix multiplication per kernel. Results when convolving an
image with 100 kernels are presented in Table A.2. In that case, the parallel GEMM
version is always significantly faster than the vectorized version. The speedups are
ranging from 6.7 to 12.7, depending on the configuration of the convolutions. The
speedup gets even better when more kernels are used. This time it becomes clear
that the performance of the MKL is largely superior to a naive implementation.
Moreover, since the matrices are now much bigger, it becomes interesting to use
the parallel version of the MKL that is about twice faster than the standard version
on this experiment.

From the results, it can be deduced that a valid convolution of one image with
one kernel should always be computed using a vectorized algorithm. When the
image is convolved with enough kernels at once, it should be reduced to a ma-
trix multiplication algorithm. Moreover, a parallel implementation of the matrix
multiplication should be used.
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A.4 Full Convolution

A full convolution is very similar to a valid convolution except that it produces
an image bigger than the source image (𝑂 , 𝐼 + 𝐾 − 1). This makes the code
harder to optimize than for the full convolution since it contains several conditions
that limit the possibilities of vectorization. Nevertheless, it is still possible to
write an optimized version with SSE and AVX, by computing several floating
point operations in one CPU cycle. Another possible optimization is to reduce the
full convolution to a Fast Fourier Transform (FFT) operation (see Section 4.4.2).
There is some overhead since both input matrices must be padded with zeroes to
the size of the output matrix. Moreover, the performance is highly dependent on
the efficiency of the FFT implementation. In our tests, the FFT implementation
from the Intel MKL library was used. Table A.3 shows the performance of these
different versions for a single-precision full convolution. For very small dimensions,
even the vectorized version does not beat the standard version and the FFT version
only gets better than the vectorized from medium images. The FFT speedup
ranges from 0.2 to 33.5 and are generally increasing with the image and kernel
size. Even for such small images, it already becomes interesting to perform the
FFT in parallel. This is observed as the parallel version of the FFT begins to be
faster than the standard version at the same point where the FFT becomes faster
than the vectorized version. Moreover, for large images, even an handcrafted FFT
can be faster than the vectorized version.

Again, a single image is often convolved with N kernels at once to produce N
output images. Handling this special case directly in the implementation leads to
better performance. Indeed, the FFT and padding of the input image only needs
to be done once and more computations can be vectorized. Results for the full
convolution of an image with 100 kernels are presented in Table A.4. It can be
observed that the FFT becomes interesting even for smaller matrices. Moreover,
the FFT speedups are a bit higher than before. Finally, the overall speedup (FFT
version compared to the standard version) are significantly higher. Indeed, the
FFT version for the largest configuration is 116 times faster than the standard
version while it only was 67 times faster when considering only one kernel at once.

To conclude, a full convolution of an image with one or more kernels should be
computed by a vectorized algorithm for small matrices and by a FFT reduction
for large matrices. When the dimensions are large enough, a parallel version of
the FFT computation should also be considered.

A.5 GPU Performance

Over the last years, the use of GPU as computational unit for machine learning
has increased exponentially. Indeed, one can make use of their massive parallel
capabilities to compute some operations very quickly (Owens et al., 2007). While
some very massive speedups were claimed early, it is likely that the speedups are
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Table A.3: Performance of a single-precision full convolution, in microseconds.
The speedup is comparing the FFT(C) version with the Vectorized version. The
Vectorized version uses SSE and AVX to perform up to 8 single-precision floating
points in one CPU cycle.

Image 12x12 16x16 16x16 28x28 50x50 128x128 128x128 256x256
Kernel 5x5 5x5 9x9 9𝑥9 17x17 17x17 31x31 31x31
Standard 4.165 7.119 21.411 62.198 690.085 4430 14501 57436
Vectorized 4.527 7.461 16.913 45.658 375.189 2202 6941 28495
FFT(A) 22.499 34.862 44.086 88.335 601.149 1357 27399 11945
FFT(B) 10.563 21.739 23.821 39.652 98.685 311.238 1565 2083
FFT(C) 17.041 34.716 32.849 42.511 81.734 187.001 596 850
Speedup 0.265 0.21 0.51 1.07 4.590 11.775 11.645 33.523

Table A.4: Performance of a single-precision full convolution of 1 image with 100
kernels, in milliseconds The speedup is comparing the FFT(C) version with the
Vectorized version. The Vectorized version uses SSE and AVX to perform up to 8
single-precision floating points in one CPU cycle.

Image 12x12 16x16 16x16 28x28 50x50 128x128 128x128 256x256
Kernel 5x5 5x5 9x9 9𝑥9 17x17 17x17 31x31 31x31
Standard 2.670 4.461 10.689 29.137 210.461 1238 2964 11172
Vectorized 0.460 0.755 1.706 4.585 36.657 199.421 699 2835
FFT(A) 2.591 2.737 3.647 7.130 43.931 113.872 1869 913
FFT(B) 0.477 1.098 1.317 2.433 6.931 26.552 107.597 178.677
FFT(C) 0.816 1.339 1.553 2.160 4.928 18.359 52.245 96.296
Speedup 0.57 0.56 1.09 2.12 7.43 10.862 13.37 29.44

ranging from 2 to 10 times faster (V. W. Lee et al., 2010) and some operation are
not necessarily faster on a GPU.

As a reference, this section compares the performance of different algorithms on
CPU and GPU. For each operation, the time used to transfer the data from CPU
to GPU and back is included in the measure. In practice, this time could be
mitigated if all operations are done on the GPU.

For benchmarking, four different operations have been selected. These operations
have been selected for their use in neural network training. In each case, several
CPU versions are compared to the GPU version.

A.5.1 Matrix-Matrix Multiplication

The matrix-matrix multiplication is a very expensive operation, with a time com-
plexity of 𝑂(𝑁3). Although there exists algorithm with lower complexity, in prac-
tice, they are slower than a carefully optimized standard algorithm.

This benchmark compares five implementations of Matrix-Matrix multiplication:
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Figure A.1: Comparison of the performance of Matrix-Matrix Multiplication on
CPU and GPU, on different floating point precisions.

• std : A naive CPU implementation

• vec: A carefully tuned CPU implementation of our doing

• mkl : The CPU implementation from the Intel MKL library

• mkl-threads : The CPU parallel implementation from the Intel MKL library

• cublas : The GPU implementation from the NVIDIA CUBLAS library

Figure A.1 presents the results of this benchmark with different floating point
precisions. Of all the CPU implementations, apart from very small sizes, the
mkl-threads version is clearly, and as expected, the fastest version. On a single-
precision floating point benchmark, which is the most used in deep learning, it can
be observed that the GPU version starts overperforming the CPU version when
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multiplying matrices bigger than 400x400. After this point, the GPU version is
about two times faster than the CPU version. On a double-precision benchmark,
the CPU implementation is always at least as fast as the GPU version even for
large matrices. On complex numbers, the same conclusions can be observed, with
the GPU being faster on single precision and slower on double precision. The
single precision results confirm the results presented in (V. W. Lee et al., 2010)
for the SGEMM operation.

The large difference between single-precision and double-precision comes from the
fact that the tested GPU is a consumer card which is especially optimized for
single precision. Only some of the professional GPUs from NVIDIA are optimized
for double-precision as well.

A.5.2 Fast Fourrier Transform

The FFT computes the Discrete Fourier Transform (DFT) of a sequence in an
optimized manner, with a complexity of 𝑂(𝑁 log𝑁). This is an operation that is
very computation-intensive.

Four FFT implementations are compared:

• std : Handcrafted, slightly optimized, parallel for several transforms, imple-
mentation

• mkl : The CPU implementation from the Intel MKL library

• mkl-threads : The parallel CPU implementation from the Intel MKL library

• cufft : The GPU implementation from the NVIDIA CUFFT library

Figure A.2 presents the results of this benchmark. The first row is a single trans-
form of the given size, while the second line is 512 transforms of the given size. It
is very interesting to see that even on a single precision workload, the GPU version
is very close to the best CPU version, but slightly slower. When several transforms
are done at once, the GPU version does not come close to the CPU version, being
around two times slower. This probably shows that the GPU version is optimized
for large FFT and not for multiple smaller FFTs. It is also interesting that the
parallel MKL version is not significantly faster than the sequential MKL version.

A.5.3 Batch Valid Convolution

The valid convolution is used during forward propagation in CNNs. Generally,
this is done at once for several batches of images with multiple input channels and
several kernels at once. This is an operation that is sometimes referred as a 4D
convolution, but the convolutions are done on 2D images.

Several different implementations are compared:
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Figure A.2: Comparison of the performance of the Fast-Fourrier Transform on
CPU and GPU, on different floating point precisions.

• vec: Optimized CPU parallel version

• blas : Convolution with Matrix-Matrix multiplication, parallel version (see
Section 4.4.2)

• cudnn: GPU version from the NVIDIA CUDNN library

A simple handcrafted algorithms is not used since it would be too slow already
for the dimensions tested in this benchmark. From our evaluation of performance,
an unoptimized algorithm for this operation is almost two orders of magnitude
slower than the other tested alternatives. Unfortunately, there is no standard
CPU implementation of the convolution such as BLAS.
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Figure A.3: Comparison of the performance of the Batch Valid Convolution on
CPU and GPU, with different image and kernel sizes.

Since this operation is only used for training CNNs, only its single-precision version
is benchmarked.

Figure A.3 details the result of this test. Several different image and kernel sizes are
tested with increasing numbers of images. The number of kernels and the number
of input channels is kept constant. On this benchmark, is it quite clear that the
GPU version is much faster than the other versions. On large images (results
from the first row), the cudnn version is more than one order of magnitude faster
than any of the CPU versions. And this is the case even for very few images.
When images are small, the differences are less important, but the cudnn version
still manages to be at least twice faster than vec and blas, except with very small
number of images. In this case, the GPU version really shines with the very
high computational cost of the convolution operation. Interestingly, the speedups
observed in this experiment are higher than those observed in (V. W. Lee et al.,
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2010). This may be explained by a slower CPU implementation used here or by
the excellent performance of the CUDNN library that was not available at the
time.

A.5.4 Batch Full Convolution

The full convolution is used during back propagation in CNNs. Again, this is done
on several images and with several kernels at once. The main difference between
this operation and the valid version is that it is harder to optimize since there are
many border cases to handle.

For this operation, three implementations are compared:

• vec: Optimized CPU parallel version

• fft : Convolution with Fast Fourrier Transform, parallel version (see Sec-
tion 4.4.2)

• cudnn: GPU version from the NVIDIA CUDNN library

Again, no unoptimized naive algorithm is benchmarked, it would be several orders
of magnitude slower than the optimized CPU versions. Since this operation is only
used for training CNNs, only its single-precision version is measured.

Figure A.4 presents the performance of the different versions. Again, several dif-
ferent image and kernel sizes are tested and the number of images is increased. On
this benchmark, it’s definitely clear that the cudnn version is much faster than the
two CPU contenders. The GPU version is not significantly faster than the valid
version, but the CPU versions are much slower on a full convolution than on a valid
convolution. In fact, it is much more difficult to optimize for a full convolution
given the amount of padding that is performed and the very high memory band-
with required. On some of the configuration tested, the cudnn version is almost
two orders of magnitude faster than the fft or vec versions.

A.5.5 Conclusion

While a GPU version is quickly much faster than a naive version of complex
algorithms, the speedups are much lower when compared with a highly optimized
CPU implementation. Moreover, the cost of transferring data to and from the
GPU is not negligible. This is why it is generally only interesting to use the GPU
for large problems or for very computation-heavy problems. Otherwise, the gain
of extra parallelization is canceled by the cost of transferring the data.

Moreover, it is also very important to consider the precision of computation. In-
deed, most GPUs are highly optimized for single precision but their double preci-
sion performance is quite poor. This is not an issue for Artificial Neural Network
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Figure A.4: Comparison of the performance of the Batch Full Convolution on CPU
and GPU, with different image and kernel sizes.

(ANN) for which single-precision is enough, but may be an issue for other ma-
chine learning models for which it is not precise enough. The general trend in
neural network learning with GPUs is even to work with half-precision floating
point numbers for more performance. However, there is no such precision on CPU
without doing the computations with higher precision and doing conversions.

The speedups than can be gained by using a GPU implementation also differ
greatly from one problem to another. As seen in this section, the a matrix-matrix
multiplication can be around two times faster, while the gains are not significant
for an FFT. On the other hand, the speedup on a convolution operation is very
significant, ranging from one to two orders of magnitude faster. This shows the
high potential of GPU for CNN and Deep Learning in general.

The results presented here should not be taken as general advice on which version
is the fastest. There are large differences between different types of CPU and types
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of GPUs and the actual speedup will greatly vary depending on what is available.
There also may be faster alternatives to the implementations that have been tested
here. Moreover, depending on the type of machine learning model and the exact
architecture, the needs will change. In the end, the only sensible thing to do is to
benchmark according to the expected needs of the model.

A.6 References for Appendix A
Lee, Victor W. et al. (2010). “Debunking the 100X GPU vs. CPU myth: an evalu-

ation of throughput computing on CPU and GPU”. In: ACM SIGARCH Com-
puter Architecture News 38.3, pp. 451–460 (cit. on pp. 61, 76, 185, 187, 189).

Owens, John D. et al. (2007). “A survey of general-purpose computation on graph-
ics hardware”. In: Computer graphics forum. Vol. 26. 1. Wiley Online Library,
pp. 80–113 (cit. on pp. 61, 184).
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Appendix B

Framework Evaluation

Sharing is good, and with digital
technology, sharing is easy

Richard Stallman

.
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B.1 Introduction

Deep Learning Library (DLL) is the framework that was developed to support the
research done during this thesis (See Chapter 4 for details). The features of the
framework are highly related to the Restricted Boltzmann Machine (RBM) and
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Convolutional Restricted Boltzmann Machine (CRBM) models. However, it is also
able to train regular neural network models and its usage is not tightly coupled to
this thesis. In order to see how this framework performs in practice and evaluate
its potential for other researchers, it is compared with several other frameworks
on a few experiments.

There are two main families of machine learning frameworks:

1. Low-Level Frameworks: In this case, the basic building block of the frame-
work is simply the ability to describe tensors in matrix and mathematical
terms. From this basic ability, higher level building blocks such as neural
network layers can be described. This allows a very large range of models to
be implemented with the framework. However, it generally means that the
use of the framework is somewhat more complicated. It is the best choice
when new models are being developed. Some of these frameworks provide
general training algorithms or automatic differentiation capabilities.

2. High-Level Frameworks: The framework directly provides machine learning
building blocks such as convolutional layers or a ReLU layer and training
capabilities. These kind of frameworks are generally easier to use but allow
less customization. Moreover, it is also generally harder to develop custom
models without editing directly the code of the framework itself. It is the
best choice when using existing models, already supported by the framework
and not needing extensive customization.

DLL is in itself a high-level framework offering various machine learning modules.
Since it is based on ETL which is a low-level tensor-like library, it could also
be described as a low-level framework, but the features would not be enough on
themselves to make a fully usable machine learning framework. Nevertheless, the
fact that it is based on a low-level framework helps with the extensibility of the
framework and its development.

For comparison with DLL, the following frameworks have been selected:

1. Caffe (Jia et al., 2014): A high-level machine learning framework started
by The Berkeley Vision and Learning Center (BVLC). The focus of this
framework is speed and expression. The project is developed in C++. It is
optimized for both Central Processing Unit (CPU) and Graphical Processing
Unit (GPU). Although it can be used directly with a low-level C++ API,
it is generally best used using its special descriptor language to describe the
model and its training parameters in a text file. It cannot be distributed on
several computers.

2. TensorFlow (Abadi and al., 2015): A low-level library using data flow graphs
to perform numerical computations. Although very general, this library is
mainly used for machine learning. It was originally developed and used
internally by Google and has since been open-sourced. It can be used on
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CPU and GPU. It is a very recent library, first released in 2015. It has a
very large set of features. The core of the system is written in C++, but the
front end features are only available in Python. The computation graph can
be distributed across several nodes. It provides automatic differentiation of
the mathematical expressions.

3. Torch (Collobert, Kavukcuoglu, and Farabet, 2011): A low-level machine
learning framework. It is a really mature project, started in 2002, one of the
earliest machine learning framework. It is written in C, C++ and Lua and
is used through a Lua front-end. It has support for both CPU and GPU.
Although it is low-level, it provides several high-level modules. It cannot
be directly distributed but there are some third party libraries allowing to
distribute Torch computations. It does not have any support for automatic
differentiation.

4. Keras (Chollet, 2015): A high-level machine learning library. It is a recent
project that runs on top of either Theano or TensorFlow as a backend. It
is written in Python and can only be used with Python. It provides a large
number of high level modules that ease the development of machine learning
software. It can also be used on several machines via TensorFlow backend,
but not trivially.

5. DeepLearning4J (Team, 2015): A distributed deep learning framework. This
framework is written in Java, C and C++ but can only be used with Java.
It works with GPU and CPU. It has a very large set of features. It is
supported commercially by Skymind. It can easily be distributed across
several machines.

These frameworks have been selected for being among the most popular in the
deep learning community and for being close to the DLL framework itself.

The frameworks are first compared empirically on several different simple machine
learning experiments. On each of these experiments, the training time on CPU
and GPU is computed as well as the final test accuracy. Moreover, the difficulty
in creating and training the different models is also discussed. Then, the state of
each framework is summarized in a general way. Finally, conclusions are drawn as
to how the DLL framework compares to the other tested software and what should
be done in order to make it better.

B.2 Empirical Evaluation

For an empirical evaluation and comparison of the different frameworks, several
different experiments have been designed. Three different data sets have been
selected for their popularity: MNIST, CIFAR-10 and ImageNet.

The goal of these experiments is not to reach state of the art performance, it is
simply to compare accuracy and speed of different implementations of the same
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model. Finally, since every framework has some different set of features, the ex-
periments are limited to the common subset of features that all tested frameworks
support. Nevertheless, some of the experiments have only been performed on some
of the frameworks because of the lack of RBM or CRBM support or because of
issues found with some of the frameworks.

The computer and configuration used for these tests is described in Section A.2.

The frameworks have been installed with the following details:

• DLL: Used from the sources directly with the last version available at the
time of this writing (Git commit 99c49ed). In CPU mode, the experiments
are compiled with support for the parallel MKL library. When GPU mode
is selected, they are compiled to support the NVidia CUFFT, CUBLAS and
CUDNN libraries.

• Caffe: Installed from the sources, from Git commit 5a201dd, in GPU mode.
The path to the custom installation of MKL and CUDA was set. Following
the documentation indicating that it could be faster or slower depending on
the situation, CUDNN mode was not enabled. The switch between CPU and
GPU is done through the solver mode property.

• TensorFlow: Installed directly from the official binary provided by the project,
in a virtual Python environment. The version 0.12 RC0, with CUDA 8.0 was
selected, with Python 3.4. The switch between CPU and GPU is done by
letting CUDA know about the available device or indicating that there is no
GPU available, changing a simple environment variable.

• Keras: The version 1.1.2 was installed directly from the official installer in a
virtual Python environment, on Python 3.4. The TensorFlow backend was
used. The switch between CPU and GPU is done as it is for TensorFlow.

• Torch: Installed directly from the sources, from Git commit 426e298. The
path to the custom MKL and CUDA installation was set. A different version
of each experiment was necessary to handle CUDA.

• DeepLearning4J: The version 0.7.0 was installed with Maven. The CPU or
GPU backend is simply selected when the application is built by Maven, by
selecting the correct Java libraries to use.

For each framework and tested case, the best result out of three runs has been
used as the final result.

For reference and for an easy reproduction of the results, the source code used to
perform these experiments is available online1. This includes code for each of the
model for each of the experiment as well as the different configuration scripts that
are used to select the CPU and GPU mode.

1https://github.com/wichtounet/frameworks
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Since DLL is generally not faster on GPU mode than on CPU, the results have
been taken in CPU mode for this framework.

B.2.1 MNIST

MNIST is a data set for digit recognition (LeCun, Bottou, et al., 1998). It contains
60’000 small images of digits for training and 10’000 images for testing. Each image
is grayscale and is of the same 28 × 28 size, leading to an input size of 784. It is
very well known and has been used over and over again with almost all existing
machine learning methods. The current state of the art for the data set is using
a large Convolutional Neural Network (CNN) trained using DropConnect (Wan
et al., 2013). This technique achieved an error rate of 0.21%, which is better than
the human recognition rate.

Although this data set is now considered easy, it is a good candidate for this kind
of experiments since the expected performance of a neural network is well known.
And there is already code available for this data set and task for most of the
existing frameworks.

This task is solved using two different models: one fully-connected model and one
convolutional model, in order to see the performance difference between different
models for the tested frameworks.

B.2.1.1 Fully-Connected Neural Network

The first experiment that is performed is to use a simple fully-connected Artificial
Neural Network (ANN) to perform digit recognition on the MNIST data set.

The network that is tested is a three-layer network with 500 hidden units in the first
layer and 250 hidden units in the second layer. The last layer has 10 hidden units
for classification of the digits. The first two layers are using sigmoid activation
function and the network is trained with a softmax cross entropy loss.

The network is trained with Mini-Batch Gradient Descent, for 50 epochs. The
learning rate is kept constant at 0.1 during training and the momentum is set to
0.9. Batches of 100 images are used to train and test the network. After each
epoch, the accuracy on the training set is computed and the accuracy on the test
set is computed after all epochs have completed.

Table B.1 shows the final classification error on the test set for each framework.
The evolution of the training error at each epoch is presented in Figure B.1. It is
interesting that there are very significant differences between the frameworks. It
seems that the frameworks are handling very differently some of the parameters
of the network. On average, DLL, TensorFlow and Keras were the most stable
frameworks for this experiment and are always exhibiting the best final accuracy.
This can also be seen in the evolution of the training error where all three frame-
works are very close. Interestingly, TensorFlow shows a very unstable error during
the first 20 epochs of training. DeepLearning4J also exhibits good performance.
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Framework Error (CPU) Error (GPU)
DLL 1.97% 1.97%
Caffe 1.67% 3.48%
TensorFlow 1.82% 1.83%
Torch 7.19% 7.52%
Keras 1.86% 1.79%
DeepLearning4J 3.29% 3.335%

Table B.1: Final test error obtained by each framework on the Fully-Connected
Neural Network experiment, on the MNIST data set, on CPU and GPU. The
numbers in bold are from the best performing frameworks.

DLL Caffe TensorFlow Torch Keras DeepLearning4J
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Figure B.1: Evolution of the training error for the different frameworks on the
Fully-Connected Neural Network experiment, on the MNIST data set.

Overall, Torch is the framework with the worst accuracies in this experiment. It
seems that some of the frameworks are handling gradients and learning rate very
differently than others.

Figure B.2 shows the runtime performance of the different frameworks for this
experiment. On CPU, DLL is the fastest framework, being about 35% faster
than the frameworks at the second place, TensorFlow and Keras. The other three
frameworks are significantly slower. Torch is around four times slower than DLL
while DeepLearning4J and Caffe are around five times slower than DLL. On GPU,
Caffe is achieving very impressive performance being around 14 times faster than
its CPU version. It is then followed by Keras and TensorFlow. DLL manages to
be faster than both Torch and DeepLearning4J even without using the GPU. It is
also interesting to note that Keras and TensorFlow on CPU are faster than Torch
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Figure B.2: Training time performance comparison of the frameworks on a Fully-
Connected Neural Network experiment, on the MNIST data set, on CPU and on
GPU. DLL has only been used in CPU mode.

and DeepLearning4J on GPU. Not all frameworks have the same focus when it
comes to speed.

On this experiment, the DLL framework has the same training and test accuracies
as the best other frameworks and is the fastest framework on CPU. Even without
using GPU, it still remains competitive with the other frameworks when they take
advantage of the GPU.

B.2.1.2 Convolutional Neural Network

The second experiment that is performed is the same task as the first one but
using a small CNN to solve the problem.

The network is composed of the following layers. A convolutional layer with 8
kernels of size 5 × 5, followed by a max pooling layer with a ratio of two in both
dimensions. Then, again a convolutional layer with 8 kernels of size 5×5, followed
by another max pooling layer with the same ratios. Finally, one fully-connected
layer with 150 hidden units and the final fully-connected layer with 10 units. The
two convolutional layers are followed by a sigmoid activation function, as well as
the first dense layers, while the final fully-connected layer uses softmax activation.
The network is trained using the same parameters that were used in the first
experiment.

The final test error obtained by each framework is presented in Table B.2. Fig-
ure B.3 presents the evolution of the training error at each epoch. Overall, there are
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Framework Error (CPU) Error (GPU)
DLL 1.69% 1.69%
Caffe 1.51% 1.58%
TensorFlow 1.2% 1.4%
Torch 2.58% 2.89%
Keras 1.11% 0.96%
DeepLearning4J 1.72% 1.72%

Table B.2: Final test error obtained by each framework on the Convolutional
Neural Network experiment, on the MNIST data set, on CPU and GPU. The
numbers in bold are from the best performing frameworks.
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Figure B.3: Evolution of the training error for the different frameworks on the
Convolutional Neural Network experiment, on the MNIST data set.

less differences between the different frameworks than with the first experiment,
with Torch falling behind with its twice lower accuracy. All the other frameworks
have equivalent performance. The small differences between the top frameworks
may be explained by different seeds used in training. The DLL framework is quite
accurate when compared with the other frameworks. It can also be seen that the
frameworks are generally offering very similar performance between their CPU
and GPU versions. Looking at the curves, they are also very similar from one
framework to the other, with Torch and DeepLearning4J falling behind again.

Figure B.4 shows how the different libraries are performing for this experiment, in
terms in training time. There are very significant differences between the different
candidates. Again, DLL is the fastest framework on CPU, this time very clearly.
Indeed, it is 3.6 times faster than the following frameworks, TensorFlow and Keras.
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Figure B.4: Training time performance comparison of the frameworks on a Con-
volutional Neural Network experiment, on the MNIST data set, on CPU and on
GPU. DLL has only been used in CPU mode.

The slowest framework on CPU is DeepLearning4J which is eight times slower than
DLL. On GPU, the results are very different. Keras and TensorFlow are by far the
fastest frameworks on GPU. Even though DLL is not accelerated by GPU, it is
still significantly faster than Caffe, Torch and DeepLearning4J although they are
significantly accelerated by GPU. Moreover, it is only twice slower than the two
most efficient frameworks on GPU. This clearly shows that most framework are
not optimized for convolution on CPU. The CPU convolution implementations of
DLL were highly optimized for CPU, while most frameworks focus solely on GPU.

On this second experiment, DLL exhibits accuracy similar to the other best frame-
works on both CPU and GPU. On the performance side, it is the fastest of the
frameworks on CPU, with a significant speedup and has adequate performance
when compared with frameworks taking advantage of GPU, being only slower
than TensorFlow and Keras.

B.2.1.3 Restricted Boltzmann Machine

The next experiment is to train a RBM model on the MNIST data set and test
its reconstruction capabilities. It is very difficult to estimate the quality of dif-
ferent RBMs especially depending on what the end goal is. Therefore, only the
reconstruction error rate will be considered as a performance measure, even if it
is known as a poor measure of performance. It mainly serves as a comparison of
the behavior of the different frameworks.

Unfortunately, only few frameworks have support for RBM. Caffe has no support
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Framework Error (CPU) Error (GPU)
DLL 0.864% 0.864%
TensorFlow 1.173% 1.179%
Torch 6.7850% N/A
DeepLearning4J 25.761% 25.761%

Table B.3: Final test reconstruction error obtained by each framework on the
Restricted Boltzmann Machine experiment, on CPU and GPU. The numbers in
bold are from the best performing frameworks.
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Figure B.5: Evolution of the reconstruction error for the different frameworks on
the Restricted Boltzmann Machine experiment, on the MNIST data set.. The
curve for DeepLearning4J is going up and staying very high after this point.

at all for RBM and Deep Belief Network (DBN). In the tested frameworks other
than DLL, only DeepLearning4J has integrated RBM support. Torch has unof-
ficial support for RBM, which is what was used here. Unfortunately, it was not
possible to adapt this for GPU, therefore only CPU results are presented for Torch.
TensorFlow does not have integrated support for RBM, but since it is a general
purpose computation library, it is relatively simple to build a basic RBM. Keras
also has some unofficial support, but it is highly out of date with the official version
and it was unfortunately not possible to make it work.

The model that is tested is a single RBM with 784 visible units (the pixels of
a MNIST image) and 500 hidden units. All the units are binary sigmoid units.
The model is trained using Contrastive Divergence (CD) with Mini-Batch, for
50 epochs. The learning rate is kept at 0.1 during the entire training and the
momentum is set to 0.9. Mini-batches of 100 images are used for training.
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Figure B.6: Training time performance comparison of the frameworks on a Re-
stricted Boltzmann Machine training experiment, on the MNIST data set, on
CPU and on GPU. DLL was only used in CPU mode.

The final reconstruction error of each framework is shown in Table B.3. Figure B.5
presents the evolution of the training reconstruction error at each epoch. There
are very large discrepancies between the different implementations of RBM. Unfor-
tunately, it was impossible to make DeepLearning4J learn a good model. Indeed,
whatever the training parameters the model was given, it was not learning and the
best reconstruction error is in fact the reconstruction error from the model before
training. No answer to this problem was given by the maintainers of the library.
Even if Torch is not on the same performance level as DLL and TensorFlow, it is
still learning reasonably well and provides an acceptable reconstruction error once
trained for long enough. Both DLL and TensorFlow are providing a good final
reconstruction error. As seen in the learning curves, they are learning approxi-
mately at the same rate, with DLL being faster in the early epochs of training,
which may simply come from a better initialization.

Figure B.6 presents the time necessary to train the RBM using the different frame-
works. The very long time necessary to Torch for training the RBM is partially
explained by the fact that the training is done in a single-threaded manner. How-
ever, the code is made in such a way that adding more threads is even slower. This
is not directly related to Torch itself but rather to the unofficial Torch RBM library
that was used for this experiment which seems to be very poorly optimized. As for
the other frameworks, DLL is about 25% faster than TensorFlow but both libraries
are exhibiting good training times. DeepLearning4J is reasonably fast but already
four times slower than DLL. When using GPU, TensorFlow is clearly the fastest,
with DLL behind. The very small acceleration of DeepLearning4J by GPU can be
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Framework Error (CPU) Error (GPU)
DLL 0.965% 0.965%
TensorFlow 1.08% 1.074%

Table B.4: Final test reconstruction error obtained by each framework on the
Convolutional Restricted Boltzmann Machine experiment, on CPU and GPU. The
numbers in bold are from the best performing frameworks.

partially explained by the fact that reconstruction of samples does not seem to be
accelerated while the training itself is accelerated and thus a significant amount of
time is spent in computing the reconstruction error.

Overall, DLL is the fastest at training a RBM on CPU and remains competitive
even when other frameworks are taking advantage of GPU. The reconstruction
performance of the models trained by the framework is comparable to that of the
other frameworks. Moreover, it is also the framework that has the most features
for RBM and that is the most simple to build around.

B.2.1.4 Convolutional RBM

The final experiment is similar to the previous one, but using a CRBM instead of
an RBM. It is also evaluated using the reconstruction error as was the previous
experiment.

When it comes to CRBM, the choice of frameworks supporting it is even more
scarce than it was for RBM. From the frameworks having support for RBM, it
was only possible to use TensorFlow for a CRBM implementation. For this, the
previous implementation was adapted to a CRBM. DeepLearning4J has no support
for CRBM and Torch has not even any unofficial support for it.

The model that is trained is a single layer CRBM with 8 convolutional filters of
size 5×5. It is trained with CD with Mini-Batch, for 50 epochs. The learning rate
is set to 0.001 during the entire training and the momentum is set to 0.9. Batches
of 100 images are used for training.

The final reconstruction error of each framework is shown in Table B.4. Figure B.7
presents the evolution of the training reconstruction error at each epoch. There
are not very significant differences between the frameworks. DLL is a bit faster
to learn reconstruction and ends up with a better reconstruction rate but both
implementations are achieving a very good reconstruction rate.

The time necessary to train the model with both frameworks is presented on
Figure B.8 for GPU and CPU. DLL achieves an excellent performance on CPU,
being almost three times faster than TensorFlow. Once it is given access to a GPU,
TensorFlow becomes much faster, making TensorFlow about 2.5 times faster than
DLL.

The DLL framework is exhibiting similar reconstruction performance for CRBM
than TensorFlow, but has real integrated support for CRBM. It is especially fast
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Figure B.7: Evolution of the reconstruction error for the different frameworks on
the Convolutional Restricted Boltzmann Machine experiment, on the MNIST data
set.
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Figure B.8: Training time performance comparison of the frameworks on a Convo-
lutional Restricted Boltzmann Machine training experiment, on the MNIST data
set, on CPU and on GPU. DLL was only used in CPU mode.
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Framework Error (CPU) Error (GPU)
DLL 40.31% 40.31%
Caffe 90% 36.17%
TensorFlow 38.4% 36.9%
Torch 41.56% 37.84%
Keras 37.13% 35.09%

Table B.5: Final test error obtained by each framework on the Convolutional
Neural Network experiment, on the CIFAR-10 data set, on CPU and GPU. The
numbers in bold are from the best performing frameworks.

on CPU but falls behind TensorFlow with a GPU.

B.2.2 CIFAR-10

Although MNIST is a good benchmark data set, it is very small and its images
are also very small and grayscale, making it not really representative of the images
handled by recent networks. Therefore, CIFAR-10 was used as the second data set
for experiments. CIFAR-10 is a data set for object recognition (Krizhevsky and
G. Hinton, 2009). It contains 60’000 images of ten different classes. Each image is
a 32× 32 color image, with three color channels, for a total of 3072 inputs. 50’000
images are used for training and 10’000 are used for testing. Although very similar
to MNIST, it is significantly more complicated to obtain good results and the state
of the art accuracy is significantly lower. At this time, the best accuracy achieved
on this data set is 96.5% (Graham, 2014), achieved with a special max pooling
operator.

Once again, we use a convolutional network for this experiment. The network is
similar to the one used for the previous MNIST experiment, but with significantly
more convolutional filters. The first convolutional layer has 12 filters of size 5× 5
and is followed by a 2×2 max pooling layer. The third layer is again convolutional
with 24 filters of size 3× 3 and again pooled with 2× 2 max pooling. These layers
are followed by a dense layer of 64 units and a final softmax layer with ten output
units, representing the final classes. All the hidden units are using Rectified Linear
Units (ReLUs). The network is trained similarly as the previous networks, but with
a smaller learning rate (0.001).

Unfortunately, we did not succeed in using DeepLearning4J for this experiment.
Indeed, the training always stopped with an error, apparently related to the of-
ficial data loader for this data set. No answers or solution was provided by the
maintainers of the library at the time of this writing. Thus, this framework has
been removed from this experiment.

The final classification error of each framework is shown in Table B.5. The large
error rates for this experiment are not surprising given the small size of the net-
work being trained and the short training. Except for Caffe in CPU mode, every
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Figure B.9: Training time performance comparison of the frameworks on a Con-
volutional Neural Network experiment, on the CIFAR-10 data set, on CPU and
on GPU. DLL has only been used in CPU mode.

framework achieves similar performance on this task. For an unknown reason,
Caffe training was very unstable and was generating Not-a-Number (NaN) results
very quickly during training.

Figure B.9 presents the training times for this task, for each framework. Although
the speedups are less significant than for the previous CNN experiment, DLL is
still the fastest framework when using only a CPU. Indeed, it is about 40% faster
than TensorFlow and Keras and even twice faster than Torch and 2.6 times faster
than Caffe. On GPU, DLL has the same speed as Torch, at the last position,
but is significantly slower than the leading frameworks. Indeed, TensorFlow and
Keras are about four times faster than DLL while Caffe is almost twice faster. The
difference in the speedups can be explained by the significantly larger number of
filters in the convolutional layers and the larger input images. This may indicate
that most frameworks have been more optimized for larger networks. This also
confirms that GPU computations are achieving the best performance when a large
amount of data is available for each computation.

Overall, DLL is able to train a CNN achieving the same accuracy as the other
frameworks for the CIFAR-10 object recognition task and is able to train it faster
than them when using a CPU. However, DLL is among the slowest frameworks
when a GPU is available.
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B.2.3 ImageNet

The previous two data sets are containing relatively small images and contains rel-
atively few images. Therefore, the last experiment is done on ImageNet. ImageNet
is a very large database of natural color images, organized in many categories. In
total, there are more than 14 millions of images and more than 20’000 categories.
In this experiment, we are considering the sub part defined for the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) 2012 (Russakovsky et al.,
2015). This sub data set contains 50’000 validation images, 100’000 test images
and around 1’200’000 training images. All the images are sorted into 1000 cate-
gories. It still considered as a challenging data set but many recent breakthroughs
have been achieved on this task. At the time of this writing, the best classification
error is 3.08%, achieved with the Inception network (Szegedy, Ioffe, et al., 2016)

Prior to training, all the images have been resized to a size of 256 × 256, for
a total input size of 196’608 pixels (250 times more than for MNIST). No data
augmentation is performed for training, the images are taken directly, contrary to
most state of the art results that are using random cropping. Due to the high
dimensionality of the images and the very large number of images available in the
data set, it is impossible, in our environment, to keep the data set in memory. This
makes training more difficult and more time-consuming since images are loaded
several times from the file system.

While every reference frameworks had official training for the previous MNIST and
CIFAR-10 CNN experiments, only Caffe provides an official and up-to-date code
for training with ILSVRC 2012. The code for DeepLearning4J has been based on
an official reader for data sets similar to ImageNet. For the other frameworks,
simple data reading has been implemented using the tools available in each of
them.

In order to solve this task, a large network is used. It starts with five convolutional
layers, using a 3 × 3 filter and one pixel of zero-padding around the image, thus
the output size is the same as the input size. Each of these five layers is followed
by ReLU activation and max pooling with a 2 × 2 kernel. They are followed by
one dense layer with 2048 ReLU units and a fully-connected softmax layer with
1000 classification units corresponding to the classes.

To keep the time of the experiment reasonable, the network is only trained for
five epochs. After the training, the accuracy over the training set is computed.
The networks are trained using mini-batches of 128 images. However, since it was
not possible to use this parameter for DeepLearning4J and Torch, they are using
mini-batches of 64 images. Indeed, both required more than 12GB of memory with
128 images in a mini-batch.

The final classification training accuracy of each framework is shown in Table B.6.
Unfortunately, DeepLearning4J was too slow to complete the five epochs in our en-
vironment, therefore the final results were not computed. Overall, each framework
is exhibiting comparable accuracy on this data set even with very few training
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Framework Error (CPU) Error (GPU)
DLL 30.09% 30.09%
Caffe 30.28% 33.03%
TensorFlow 32.12% 32.88%
Torch 25.28% 27.39%
Keras 31.73% 30.23%

Table B.6: Final training error obtained by each framework on the Convolutional
Neural Network experiment, on the ImageNet data set (ILSVRC 2012), on CPU
and GPU. The numbers in bold are from the best performing frameworks.
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Figure B.10: Training time performance comparison of the frameworks on the
ImageNet task, on CPU and on GPU. The time scale is logarithmic. The time is
the average time necessary for the training of one batch of 128 elements. DLL has
only been used in CPU mode.

epochs.

In order to make comparison more straightforward, the average training time for
one batch is used rather than the full training time. For the frameworks using
batches of 64 images (Torch and DeepLearning4J), the result is the training time
for two batches. Figure B.10 presents these results. Since DeepLearning4J is much
slower than the other frameworks, the results are presented in logarithmic form.
The definite reason for this inefficiency was not found, but several similar reports
were found online indicating very large difference in performance between GPU
card models. Once again, DLL manages to be the fastest framework on CPU,
even with this very large model. Indeed, it is about 40% faster than Keras and
two times faster than TensorFlow and Caffe and more than three times faster than
Torch. All the frameworks are much faster than DeepLearning4J in both training
modes. When using the GPU, DLL is slightly slower than Torch, but already two
times slower than Caffe and about three times slower than Keras and TensorFlow.
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On this last experiment, DLL manages to train a very large network with similar
accuracies as the other reference frameworks. Moreover, it is able to train it
significantly faster than they are when only the CPU is available. Once GPU is
used, it is among the slowest frameworks.

B.3 General Evaluation

This section summarizes the state of the different frameworks as to give an overview
of what they are good for and what are their lacks. It is important to note that
this evaluation only results from the previous experiments and as such is not an
extensive evaluation and may be highly suggestive.

B.3.1 Caffe

Caffe has a large set of features, especially when focused on neural networks. The
framework is generally up to date with recent technologies. However, its funda-
mental architecture makes it a poor candidate to implement Recurrent Neural
Networks (RNNs) and makes it highly inflexible in general. It is not directly ex-
tensible without working inside Caffe code. Moreover, Caffe has no support for
RBM or CRBM.

For some, one advantage of Caffe is that no programming code is necessary to
create and train machine learning models. Indeed, everything can be done by
describing the model and describing the solver to train it. However, protobuf,
the language chosen for the description of the network is not the simplest one
to work with and the structure of the description is not always easy to create
or even to understand. Moreover, it is also difficult to change how it is working
since the only access is through the descriptor, so it cannot be integrated directly
in another application. The switch from CPU to GPU is very simple, a simple
property in the solver descriptor and the training will be done in the selected mode.
A problem in Caffe is that, contrary to all the other frameworks, it has absolutely
no notion of epochs, only of iterations. This makes porting some examples to Caffe
non-intuitive and makes comparing results more difficult than it should be.

The installation is not necessarily trivial and there are several large dependen-
cies that are necessary such as Boost, protobuf, gflags and several other libraries.
Moreover, the installation with GPU support is not evident since it has very strong
dependencies on the version of CUDA and of CUDNN it is supporting.

The CPU mode of Caffe was the most unstable of all the tested frameworks. It
was very difficult to make it work on some simple examples, even on the examples
from the official distribution. Several errors such as double free corruption or
experiments ending with Not-a-Number (NaN) results were encountered. This
can be observed on the first experiment where the Caffe version trained with CPU
produces the worst results, by far. On the other hand, it is generally much better
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when training the model in GPU mode.

As for the performance, it has average performance on CPU and good performance
on GPU but it is only the fastest network on the small fully-connected experiment.

Due to its small customization abilities, it is best used when using existing models,
already written in Caffe descriptor language and when planning to only use GPU.

B.3.2 TensorFlow

TensorFlow is a recent, very modern, low-level framework that is evolving really
quickly. At its base, it is not limited to machine learning. Indeed, it is mainly
a framework for optimized numerical computation using data-flow graphs with
automatic differentiation.

Due to its low-level nature, it has very few features related to machine learn-
ing. Indeed, it does not even have any support for Multi-Layer Perceptron (MLP).
While it has a few high level structures, such as Long Short Term Memory (LSTM)
cells, it provides mainly tools such as softmax or ReLU functions that needs to be
composed to form machine learning models. However, it does have a very good
support for various optimization algorithms, such as Stochastic Gradient Descent
(SGD) and Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), and
its automatic differentiation feature makes it easy to develop simple models with-
out having to work out the gradients of the model. This makes it very easy to
experiment with new variations of models or to extend existing code. On the other
hand, it is rather complicated to create simple models such as CNN compared to
some other frameworks.

The installation of TensorFlow can be relatively easy, but it highly depends on
the platform on which installation is to be made. Indeed, installers are provided
for several popular platforms which makes it very simple to install. For other
platforms, installation from the sources is necessary and is far from trivial and
requires many non-obvious dependencies.

Its runtime performance is really good. It is generally the fastest framework on
GPU, sometimes being several times faster than the second (not including Keras,
based on TensorFlow). For some CNNs on CPU, it could be faster, being two
times slower than DLL.

It is very easy to switch between CPU and GPU, a simple environment variable in
the system allows to change it without modification of the source code or without
recompilation.

Overall, it is an excellent candidate for experimentation with new models or vari-
ations of existing models. Due to its growing popularity, there is a large number
of examples available, making it easy to work with existing systems.
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B.3.3 Keras

Keras is a high-level framework based on TensorFlow. It can also be used as a
frontend to Theano, but this was not tested in these experiments.

While TensorFlow is very low-level and often makes it necessary to write mathe-
matical expressions to train a network, Keras adds support for higher level struc-
tures such as dense and convolutional layers directly. It also has a real notion of
network. It has a large panel of features. Unfortunately, it does not have any
official support for RBM and the only unofficial support for it is highly outdated
and is not able to work with the recent versions of Keras.

Since it is based on TensorFlow, it is also extremely fast. Indeed, on GPU it
is always on the top frameworks. On CPU, except for convolutional networks
where it is dominated by DLL, it is among the fastest frameworks. Moreover,
direct access to the tensor backend is also possible to make changes or extend the
framework with more manipulation. The switch from CPU to GPU is the same
than TensorFlow, with a simple environment variable to change.

The installation is fairly simple, but requires either Theano or TensorFlow, which
are not always trivial to install.

Overall, it is an excellent high level framework that can also be customized, with
very good performance, both on CPU and GPU.

B.3.4 DeepLearning4J

DeepLearning4J is a high-level framework with a large set of features. It has
integrated support for distributed computing.

It has integrated support for many neural networks models. However, the way
networks are built in the code is not especially intuitive and doing other tasks than
just classification with the models is not practical. Customization or extension of
existing models is not easy due to the framework complex architecture. There
is official support for RBM, but it is very limited and very unstable. Indeed, it
was not possible during the experiment to successfully train a simple RBM for
reconstruction.

The installation is relatively easy if it is done with Maven. Otherwise, it requires a
very large number of Java dependencies. The switch from CPU to GPU is simple
but requires a recompilation of the program.

This framework is one of the slowest that was tested in this comparison. On
fully-connected networks, it was next to last in front of Torch but was last when
convolutional layers were added.

Overall, it is a good framework with many features but low performance. It is
probably a good fit if Java is already used in other research projects or if distributed
computing is necessary.

212 Baptiste Wicht



APPENDIX B. FRAMEWORK EVALUATION B.4. Conclusion

B.3.5 Torch

Torch is a mature low-level framework. At its core, it is also a tensor library like
TensorFlow, but lacks an automatic differentiation support.

Although models can be written directly using tensors, Torch also offers high
level structures such as neural network layers. It is easy to create new models
with Torch. This makes it easier to work with than TensorFlow for some models.
However, training of the models is less intuitive than with TensorFlow. In practice,
it was always one of the frameworks with the worst accuracy on the tested models.
There is unofficial support for RBM, but it is extremely slow, being 27 times slower
than DLL. There is no support for CRBM.

However, although higher level structures are available in Torch, it is still more
verbose to write code than with other high level framework with sometimes a lot
of code required to train a model. Moreover, it was also the only framework that
required changing several lines of code for switching from CPU to GPU.

The installation of the framework is highly unclear. It is not obvious how to
configure the BLAS library that is to be used by the framework. Moreover, the
installation process also tries to install, by itself, several system packages.

As for the performance of training, it is one of the slowest frameworks, with
DeepLearning4J. It is always slower than DLL, even when using a GPU.

Overall, Torch proposes almost the same features than TensorFlow but is sig-
nificantly slower, less practical to use and much less active at the time of this
writing. On the other hand, it does have the advantage of having several higher
level structures available.

B.4 Conclusion

This chapter compared several machine learning frameworks on six different exper-
iments using three different data sets. The goal was to compare DLL with popular
frameworks and see what are its strengths and weaknesses.

Overall, DLL proved on par with the other frameworks in terms of classification
performance and reconstruction capabilities. This shows that the framework is
working correctly, at least on the tested cases. However, for neural networks, it
is still lacking a few options. For instance, it does not have support for advanced
techniques such as Batch Normalization.

As for usability, for the tested experiments, DLL was among the best frameworks.
It required only very few lines of code. However, it has less options and lacks in
customization abilities and extension points. The switch from CPU to GPU is
also seamless, but requires a recompilation of the program to take effect. It is the
framework that has the best RBM and CRBM support, being designed for this,
at its core.
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In terms of performance, DLL is always the fastest framework on CPU in all our
experiments. However, it does not take enough advantage of the GPU. When using
the GPU, it is still competitive for small networks but is significantly slower for
larger networks than the other reference frameworks.

In view of this evaluation, several things will be necessary to improve DLL and
make it an appealing framework. First, it is necessary to take full advantage of
GPU. Currently, only very few operations are performed on GPU and the data
is moved from CPU to GPU too many times during training. Even if its CPU
performance is already very good, there is still room for improvement to make it
the fastest framework on CPU. Moreover, in order for DLL to be used as a general
machine learning framework, it would be necessary to add more advanced features
like Batch Normalization. Support for RNNs, and more specifically LSTMs, would
also be a plus for the framework. Finalization of its layer system so that new layers
can be added easily should also be done. Another small improvement would be
to be able to change at runtime the CPU or GPU mode instead of requiring
a recompilation. Finally, improvement of the descriptor system that allows to
create models without writing C++ code would also improve the usability of the
framework by a large factor.

This evaluation of frameworks does not aim at being extensive and has only been
performed for evaluating DLL, the framework that has been developed during this
thesis. For another point of view, Bahrampour et al. performed an extensive
comparison of five frameworks (Caffe, Neon, TensorFlow, Theano, and Torch)
(Bahrampour et al., 2015). A comparison of the main features of a large number
of Deep Learning frameworks is also available online (Wikipedia, 2016).
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Glossary

auto-encoder A model able to encode some input using an intermediate repre-
sentation and decode from this representation into the original input space.
Often used to extract features from input data.

convolution A convolution is an operation in which a function (the kernel) is ap-
plied at each position of some input function, resulting in an output function.
Visually, this can be seen as applying a 2D kernel matrix at each possible po-
sition of an image and computing the dot product at each of these positions,
resulting in an output matrix filled with these local products .

CUDA Parallel computing platform allowing developers to use NVidia Graphics
Processing Units (GPUs) for general purpose processing.

full convolution A convolution returning the complete result of the convolu-
tion, this is the default convolution. By definition, the size of the result is
𝑂𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑛𝑝𝑢𝑡+ 𝐹𝑖𝑙𝑡𝑒𝑟 − 1 .

MNIST Standard data set for digit recognition. While considered an easy task,
this data set is often used as a benchmark for new algorithms.

valid convolution A convolution returning only the parts of the convolution that
can be computed without zero-padding. By definition, the size of the result
is 𝑂𝑢𝑡𝑝𝑢𝑡 , 𝐼𝑛𝑝𝑢𝑡− 𝐹𝑖𝑙𝑡𝑒𝑟 + 1 .

vanishing gradient A problem occurring when training neural networks with
several layers in which the gradients of a layer are becoming increasingly
small.
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Acronyms

AAE Adversarial Auto-Encoder.

AIS Annealed Importance Sampling.

ANN Artificial Neural Network.

AP Average Precision.

AVX Advanced Vector eXtensions.

BLAS Basic Linear Algebra Subprograms.

CAE Convolutional Auto-Encoder.

CD Contrastive Divergence.

CDBN Convolutional Deep Belief Network.

CG Conjugate Gradient.

CNN Convolutional Neural Network.

CPU Central Processing Unit.

CRBM Convolutional Restricted Boltzmann Machine.
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