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Abstract

The goal of the project is to create a tool that assists the developer in his task of interpreting a call
graph to reduce the performance impact of function calls in large-scale object oriented applications. The
main way to reduce this overhead is to inline some functions or call sites in the application.

Inlining is an optimization that replaces a function call with the body of the called function. As inlining
brings both performance benefits and additional costs, the difficulty is to detect where it is advantageous
to apply it. Compilers have their own heuristic to perform automatic inlining, but if we want to go
further, we must take more parameters into account.

During this project we studied in details the function invocation process and how inlining can influence a
program’s execution time to develop a temperature heuristic aimed at detecting which functions and call
sites are the most interesting to inline. This heuristic is applied to a complete call graph of a program’s
execution. The analyzer is also able to detect clusters of hot call sites related to each other. We also
studied the overhead of virtual function calls and invocations through libraries. The application can
detect broken virtual hierarchies and very expensive library dependencies.

This project resulted in an analyzer for performance issues that can be used from command line or
as a library in another application. This tool allowed us to improve the performance of well-known
application.

Baptiste Wicht
Apprenticeship as Computer Scientist
Computer Science Bachelor degree

Switzerland HES-SO University of applied science
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1 Introduction

This document describes the Bachelor of Science thesis of Baptiste Wicht on a software tool developed
to improve the ATLAS experiment performance.

1.1 Context

ATLAS is one of the four experiments at the Large Hadron Collider (LHC), the world’s most powerful
particle accelerator, located at the CERN Laboratory in Geneva (Switzerland). LHC has been built to
provide suitable conditions to explore new frontiers in High Energy Physics (HEP) producing proton-
proton collisions at a design center of mass energy of 14 TeV. ATLAS acts as a huge digital camera
composed of millions of electronic channels that registers the characteristics of the particles emerging
from the interactions with very high precision. It has a standard collider experiment structure of
concentric cylinders consisting of tracking detectors, calorimeters and muon spectrometer, centered
around the collision region. The tracking device, immersed in a 2 Tesla magnetic field, measures the
charge and momentum of charged particles. The outermost cylinder is the muon spectrometer, a detector
which measures the momentum and charge of muons, particles capable of traversing the full volume of
ATLAS without being absorbed.

The basic software abstractions and tools for HEP are provided by the GAUDI[1] framework. On
top of this framework, the Athena framework provides the ATLAS-specific software interfaces and
services. Using the GAUDI terminology, a typical HEP analysis application used for the evaluation of
the performance of physics objects is made of algorithms that read data objects from a transient data
store, such as reconstructed jets, and output statistical data in the form of histograms.

This project is a part of a collaboration of the Lawrence Berkeley National Lab (LBNL) ATLAS group
with Google that aims to develop a software for performance analysis based on the Linux perf events
system. The main goal is to provide a tool to analyze the call graph of an execution of ATLAS software,
find issues and propose solutions to the user in order to improve the overall performance. The detected
issues will be of different types, like:� functions to be inlined� functions that should be in the same library� clusters of hot functions that are to be inlined together.

Indeed, the cost of invoking a function is not negligible. Before invoking a function, the context must be
saved, the parameters must be pushed to the stack (and sometimes their values must be copied), then
the function can be executed. After that, the return value (if there is one) is retrieved from the stack and
the caller context is restored. These operations are specific to an architecture and are described in detail
in an Application Binary Interface (ABI). The ATLAS software is mostly written in C++ compiled with
GCC[2] and executed on GNU / Linux platform, so the research will focus on these technologies. Some
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parameters can prevent a function to be inlined directly by the compiler. In most cases, if a function
is a good inlining candidate, but has not been inlined by the compiler, it is an issue that the developer
would like to be aware of.

The compiler cannot solve every problem concerning inlining. Indeed, it has only a part of the infor-
mation. It has a limited view on the whole application because most of the files are compiled one by
one. The goal is to have a better point of view of the whole application to make decisions about inlin-
ing. Moreover, it only has static information about the application, where it generally more efficient to
optimize based on the runtime information of the application.

The problem of choosing the most profitable call-sites to inline while minimizing the associated costs
is known as the Substitution Problem. According to R. Scheifler, we can give an efficient reduction of
the Knapsack Problem to this problem to show that the Substitution Problem is at least as hard as the
Knapsack problem[3]. This last problem is known to be NP-Complete, so solution to our problem will
require exponential time to be found. That is why we will use a heuristic to estimate the interest of
inlining a given function or call site.

1.2 Technical Information

As said in Section 2.4, this tool is part of a bigger tool chain. It will be invoked by another tool,
responsible for the perf events gathering. Then, the output of the tool will be passed to the visualizer.
Most likely, the visualizer will be a web application written mostly in JavaScript. Our application will
run on the server side as a C++ program.

This application will receive a call graph generated by either Callgrind[4] or Gooda (Google Optimiza-
tions Data Analyzer), the perf events data analyzer. The application must be designed in a way that
allows us to switch between these two call graph generators. The input will be a DOT graph file. The
graph manipulation library has not been chosen yet, so a priority will be to choose one. Once a call
graph has been received, the application has to run the analysis on the complete graph and annotate
it with the information of the analysis as well as the information of the feature extraction phase. The
application will output its issues and solutions in the console as a command-line tool. It is possible that
the project will later be included directly in Gooda in which case the output will be the annotated call
graph and the list of issues, in JSon format in order to be able to parse it from the visualizer.

1.3 Goals

Based on the above, we have to make some approximations to find a good solution. The first objective of
the project is to provide a very basic heuristic function to determine the interest of inlining a particular
function or a specific call site. We have named this heuristic value the temperature. The hotter the
objects are the more interesting they are to be inlined. To start, this temperature function will consider
the cost of a call site and the cost of the callee body. This cost must fit with the reality and must be
proportional to the real cost of invoking a specific function. The cost of invoking a function depends on
the number of instructions needed to put the parameters on the stack, to save the state of the registers,
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to restore it and to retrieve the return value of the executed function. Then, in order to improve the
precision of the temperature, we must take into account, not only the function itself, but also information
about the caller and the associated stack trace. The function will not be exactly the same for a function
or a call site because we do not have exactly the same information, but the general idea is the same.

Another objective is to detect some specific patterns in the call graph. In this context, a pattern can be
of several types: a kind of group of hot call sites related to each other (cluster) or a group of functions
in different libraries that are frequently invoking each other. At this time, it is not clearly defined how
to detect them and what to do with them once they are found. The idea of detecting clusters is an idea
that came during the project’s first phases. It is not a common technique, so nothing is proven. It is
possible that it will not be useful in terms of performance. To the contrary, it may help identify some
big issues in the project. The idea is to consider first clusters of call sites as inline candidates before
considering single call sites.

After proposing a first version of the temperature function, it will be interesting to improve it by
considering more features to find new issues and be more reliable. Section 2.4 gives more details about
the features that may be used to improve the temperature heuristic.

1.4 Structure of this document

This document is divided into eleven chapters, including this introduction. Several appendices are also
available at the end of the document.

The second chapter discusses the analysis made during this project about several subjects. Then, the
next chapters are presenting the main phases of the implementation: the information extraction and
the information analysis. The fifth chapter presents the design that has been chosen for the application.
The next section talks about the tests made for this project. After these chapters, an analysis of the
performances of the application is presented. Chapter eight and nine present refactorings made during
the project in order to improve the application and the problems encountered during the implementation.
The tools used during this project are then briefly presented.

Finally, the report is concluded with a presentation of the project’s results. This section also presents
the techniques learned during this project. Moreover, this last chapter also lists some work that may be
done to improve the application.

After the main chapters, you will find two appendices, one describing the content of the CD-Rom coming
with this report and the other one giving details about an analysis made during the tests. Then, you
will find the list of references used during this project, a glossary and an index and the lists of tables,
figures and listings present in this document.
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2 Analysis

2.1 Callgrind

As said in Section 1.2, the call graph can be generated by either Callgrind or Gooda. At this point of
the project, Gooda has not been released and it cannot be used, so Callgrind will be used during this
project until Gooda can be used. The information contained in these two call graphs is almost identical
and both can be converted to a DOT file.

It must be simple to change from Callgrind to Gooda. Either by automatically identifying the type of
input file or by providing command-line options to specify the input format.

Callgrind is a tool from the Valgrind[5] project. Valgrind works by using a synthetic processor. Your
executable is read and converted into an intermediate representation that is ran by the Valgrind virtual
processor. Then, the launched tool instruments your program adding some more code to get information
during the run. The performance slowdown of Valgrind can be very high, to an order of magnitude of
10 to 50 depending of the profiled application.

This tool records all the function calls made during a program’s execution and creates a call graph
representing all the calls. In the graph, a vertex represents a function and an edge represents a call site.
More than the relationships between the different functions of the program, this tool also records the
cost of each function and call site. A function has two costs:� the self cost: Only the cost of the instructions belonging the function� the inclusive cost: The sum of the function self cost function and the inclusive costs of every called

function

As Callgrind runs in a virtual processor, the cost is only the number of instructions fetched by the
function because Callgrind is not meant to calculate a real time. So, we do not have real information
about how long a function takes because it is not representative of a real processor.

The Callgrind file output is a flat file with every function information and call among functions. Names
are compressed and information is grouped. This file is not made to be humanly readable. We can
visualize information from a Callgrind file in a user-friendly way using KCacheGrind[6]. This tool
groups all the information per function so it is convenient to see its callers, callees and costs. It is very
useful to view all the data contained in a Callgrind profile data file. KCacheGrind provides also partial
view of the call graph.

Because our application will receive the call graph in a DOT file, we needed a way to convert a flat
Callgrind file to a DOT graph file. The tool used to perform this job is Gprof2Dot[7]. This tool is a
simple Python script that takes a Callgrind file and converts it to a DOT graph. This tool is intended
for visualization tools, so there is a lot of information in the DOT file like colors, sizes, fonts, distance,
etc. that are not useful for this project, but they are useful if we want to visualize the graph, for example
with the dot[8] tool of the Graphviz[9] distribution. This tool converts a DOT file into a PNG image
showing the graph.
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Only Callgrind and Gprof2Dot are essential to the project because they are generating the call graph
files, but the other tools are also very helpful in order to understand the call graph at its different steps.

2.1.1 Usage

Every tool in the Callgrind tool chain is a command-line tool.

Like Listing 1 shows, you have to profile your application using Callgrind.

Listing 1: Generate Callgrind profile

valgrind --tool=callgrind --demangle=no --compress-strings=no --compress-pos=no
program [program_options]

The result will be stored in a callgrind.out.XXX file where XXX will be the process identifier. Then,
you have to convert the Callgrind file into a DOT file. Listing 2 shows the necessary commands for this
step.

Listing 2: Convert Callgrind file to a .dot file

python converter.py -f callgrind -e 0 -n 0 callgrind_file > callgrind.dot

This operation can take a very long time depending on the size of the call graph.

If you want to visualize your call graph, you can convert it to a PNG image using the dot tool as
presented by Listing 3.

Listing 3: Convert a .dot file to a PNG image

dot -Tpng -o graph.png callgrind.dot

2.2 Gooda

Gooda (Google Optimization Data Analyzer) is a Google project aiming to provide a better view on
the perf events. It analyzes the data obtained from perf tool. The perf tool is a Linux kernel-based
framework. This tool provides, besides other features, a profiler. This profiler records hardware and
software events like CPU cycles, cache-misses, page faults, etc. The perf system mainly uses hardware
counters to get the information from the system without slowing it down too much. Modern CPUs
have some hardware registers to count, for example, the number of instructions executed, the number
of caches misses or the misprediction of branches. Perf reads these registers to profile the application.
The advantage of perf over tools like Callgrind is that there is much less overhead due to profiling and
more pieces of information. Contrary to general profilers, not all events are available in all CPUs. So,
profiling an application in two different platform can produce different events. Of course, due to the
sampling, we have only the main information, so we can lose some precision compared to Callgrind.
However, this precision loss is generally only impacting non frequent functions.
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The perf output file (perf.data by default) is not human-readable. It is a binary file containing the
information about every sample. At the present time, the file is not compressed and can grow very
quickly. It is not comparable to a Callgrind profile file because a perf file contains a lot more information
about each event that occurred during the profiling period, not only about the function calls.

Perf can also generate a call graph. But it was not used during this project. Indeed, perf generates
the call graph in standard output, in a format meant to be read by human, although this is not really
the case. It is not easy to parse it. Moreover, in this call graph we do not have the number of calls of
each call sites, we can only see the percentage of time spent on each call sites of the current function.
Furthermore, the least costly functions are excluded from the call graph so that in our case, we can lose
some interesting information.

Gooda analyzes the data generated by perf and generates spreadsheets of the results. More than
spreadsheets, Gooda also generates a call graph of the given data. Gooda has also to parse the libraries
to obtain information about the source code, the basic blocks and the functions in order to generate the
spreadsheets. Gooda manages several views: the source view, the basic block view and the assembly
view.

At the beginning of this project, it was not possible to have access to Gooda, because there was no NDA
between Google and LBNL. Once the NDA has been signed, it has been possible to make some tests
using the tool. Nevertheless, the call graph generation feature of Gooda has not been finished before
the end of the project, so we have not tested our tool on the call graph generated by Gooda.

2.2.1 Usage

If perf has been packaged for your system, you can install it using your package manager. Listing 4
shows how to make this installation using apt-get.

Listing 4: Install perf

sudo apt-get install linux-tools-2.6.38-8

Like almost every Linux tool, perf is a command-line utility. If you want to record perf events, you have
to use the perf record command, as shown in Listing 5.

Listing 5: Record perf events

perf record your_application [your_application_options]

perf also provides tools to visualize the data contained in the report, like perf report in Listing 6.

Listing 6: Perf report of your profile

perf report

This command-line tool will list every function of your application, with the function cost, the command
used as well as the shared object containing the function. Listing 7 shows an example of a perf report.
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Listing 7: Example of a perf report

# Events: 561 cycles
#
# Overhead Command Shared Object
# ........ ............. ........................ ........................
#

23.22% inlining libstdc++.so.6.0.14 [.] 0x9cff4
13.26% inlining inlining [.] 0x1509a
11.95% readelf libc-2.13.so [.] vfprintf
6.07% sh [vesafb] [k] 0xffffffff8103804a
4.50% inlining libc-2.13.so [.] _int_malloc
3.42% inlining [vesafb] [k] 0xffffffff8103804a
3.17% readelf [vesafb] [k] 0xffffffff8103804a
2.92% readelf libc-2.13.so [.] _IO_new_file_xsputn
2.59% readelf libc-2.13.so [.] ___printf_chk

We can also generate the call graph with perf report, as shown in Listing 8.

Listing 8: Perf call graph

perf report -g

The call graph is then printed in the console (you can navigate in the view like in the more command-line
utility). Listing 9 shows an example of such a result.

Listing 9: Example of a perf report call graph

# Events: 3M cycles
#
# Overhead Command Shared Object
# ........ .............. ........................ ..................
#

76.13% inlining libstdc++.so.6.0.14 [.] 0x9ce00
--- 0x7fc27242cb04

Infos::parseFile(std::string)
Infos::sizeOf(std::string, std::string const&)
GraphReader::parseVertices(CallGraph&)
GraphReader::extractInformation(CallGraph&)
GraphReader::read(std::string)

--- 0x7fc27242d00b
|--82.30%-- Infos::parseFile(std::string)
| ...
|--5.25%-- void std::_Destroy<std::string*>(std::string*, ...

Baptiste Wicht 12 of 83 August 11, 2011



Again, for each function we can find the command and the shared object related to it. For each end
function, we saw the stack trace.

2.3 Function call

Invoking a function is a complex operation and the detailed mechanism strongly depends on the compiler
and particularly the architecture. In this section, we will see how a function is invoked.

The exact way of invoking a function is described in an Application Binary Interface (ABI). A compiler
uses this ABI specification to generate a code that matches the current architecture.

There are two main kinds of function call convention, depending on which of the callee or the caller
remove the arguments from the stack:� cdecl: This convention supports variadic function, so the caller must clean up the stack after the

function call because the called function has no way to do this. Indeed, the called function can be
called with any number of parameters, so that it is not possible here to know at compile time how
many parameters will be passed.� stdcall: Each function needs to take an announced number of parameters, so the called function
can do the argument cleanup itself. This convention is mainly used in the Win32 API. The
advantage of this convention is that the code to clean up the stack is present only once for each
function which can result in a significantly smaller application.

This project is intended for the GNU/LINUX world, so this analysis will focus on the cdecl convention
and on the gcc compiler.

First of all, the arguments have to be passed to the callee. Generally, they are passed on the stack,
but a compiler can optimize this process using registers. The number of arguments that can be passed
using registers depends on the architecture. For example, on x86 64 architecture, you can pass up to six
parameters using registers, and on ARM architecture you can pass up to four parameters in registers.
Some arguments cannot be passed in registers if they are too big and some elements have to be copied
before they are passed to the callee.

When a non-static member function is invoked, the this pointer is passed onto the stack last, as if it
was the first argument of the function.

Then, the old instruction pointer (pointing to the first instruction after the call instruction) is pushed
onto the stack. It will be used as the return address. This is generally done automatically by the call
instruction.

Now we are in the callee body. The old base pointer is pushed onto the stack and the base pointer is
set to the value of the current stack pointer. The base pointer is an utility pointer to refer to the start
of the function, so we can easily address the parameters and the local variables using this pointer. In
some architectures, this can be achieved using the enter instruction, but not many compilers use this
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instruction. Indeed, it consumes more cycles than the equivalent instructions (15 clocks instead of 6)
although it is more compact (6 bytes instead of 9).

The callee has to save the registers it will use. For every modified register, it has to save the old value
onto the stack. Of course, the registers used to store parameters do not have to be saved.

The function can now allocate space on the stack to save local variables. Again, the enter instruction
can automatically allocate space on the stack for the local variables. Generally, the compiler tries to
put as many variables as possible directly in registers. But if there are too many variables, the compiler
will put them onto the stack.

Figure 1 shows the state of the stack if everything is passed onto the stack.

...

...
Parameter #n

Parameter #2

Parameter #1

Old instruction pointer

Old base pointer

Variable #1

Variable #2

...

Saved register #1

Saved register #2

...

Base pointer

Stack pointer

Figure 1: Stack during function call

Once everything is allocated, the body of the function is executed.

The return value is passed into the %eax register, so the callee has to fill the register and the caller can
read it. If the value does not fit in a register, it is passed on memory with %eax indicating the address
of the value. Some compilers may use two registers simultaneously to return a value fitting into two
registers (gcc use %eax:%edx to store such return value). Depending on the return value type, it will
perhaps be copied before passing it to the caller.

Then, the called function has to reverse the whole process in order to clean the stack. So it will release
the stack variables by incrementing the stack pointer for each variable. Then, for each saved register, it
will restore its old value. The last thing the function has to restore is the old base pointer in the current
base pointer. To leave instruction can be used to restore the base pointer. Once the callee has restored
everything, it can return using the ret instruction. This instruction automatically jumps to the saved
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instruction pointer and removes it from the stack.

Finally, the caller must clean up the parameters, incrementing the stack pointer with the size of the
parameters on stack (it is possible that there is no parameter on the stack). And then, the caller can
get the return values from register or from the memory.

The process described before applies for every function call, but in some cases, there are differences that
can influence the performances of the call.

Non-virtual functions are resolved at compile-time. The called function’s address is directly known when
invoking it. But virtual functions are resolved only at runtime because the compiler does not know of the
object type. In the case of gcc, the virtual functions are resolved using a so-called v-table (virtual table).
Each class with at least one virtual function has a v-table. A v-table contains pointers to each virtual
function of the class. When a new derived class is created, a new v-table is created for the new class with
the address of the member functions to invoke. Each object has a pointer to its corresponding v-table.
When a virtual function is called, the processor has to read the pointer to the table and then load the
function address from the v-table and finally call the function. We have two additional operations than
in the case of a non-virtual function call. In the case of multiple inheritance, the derived object has
one virtual pointer for each virtual table. The function call itself does not add runtime overhead in this
case, but will need adjustment of the this pointer. If we have virtual inheritance, there is also a small
overhead due to the calculation at runtime of the base class offsets. Moreover, the virtual functions have
another cost, they can generally not be inlined.

When the callee is in another library than the caller, there is also a small overhead. Indeed, when the
application is linked with a shared library, the function call is not made directly to the library because
we do not know where the library will be loaded in the system. At runtime, for every function call to a
library function, you have to first search the function address in the library function table and the then
call this address. This is no the case for a static library because the code of the static library is included
in the executable at link time with no runtime overhead.

To summarize, here are the main parameters that have a role in the cost of invoking a function:� The number of arguments (considering that a member function has always one more parameter)� The fact that the arguments are passed by value or by reference� The size of the arguments� The number of registers the function has to save� The return type of the function if it is not void and the size of this type� The virtuality of the function� The fact that the callee is in another library than the caller

There are others parameters that can increase the cost of the invocation, but these parameters are the
one that depends of the developer.
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2.4 Inlining

Inlining is an optimization that replaces a function call with the body of the function itself. The benefit
of this technique is to reduce the overhead of the call. Nevertheless, inlining has several drawbacks. In
this chapter, the effects of inlining on an application are studied.

We will start by studying the advantages of inlining. As stated before, inlining reduces the call overhead.
As said in Section 2.3, invoking a function requires several instructions and the number of instructions
depends on several parameters. When the function call is replaced with the body of the function, all
these instructions are saved, generally resulting in an improvement of performance.

Moreover, when a function body is inlined in the caller, the compiler can optimize the call and the callee
body at the same time. This may result in new optimizations. Indeed, the compiler may find some
conditional branches that are always true or false and this may also enable the elimination of some dead
code, the motion of loop-invariant code outside a loop, or even the elimination of some variables and
other optimization depending on the capabilities of the compiler. Once again these optimizations are
not guaranteed. It is quite possible that for a specific function there is nothing more to optimize.

Let’s take a very simple program as an example:

Listing 10: Base function

class Dummy {
public:

virtual int compute(int value);
};

int Dummy::compute(int value){
return value == 0 ? 2 : value * value;

}

int computeDummy(Dummy& dummy){
return dummy.compute(0) + compute(2) + compute(4);

}

It is a simple example, but it is interesting in the context of inlining. In the function computeDummy,
the compiler cannot inline the function compute because it is virtual and can be called with several
different classes with different implementations. But if this function is always called with an object of
class Dummy, all calls to the compute function can be inlined, so it will results in a code like this one:

Listing 11: Inlined function

int computeDummy(Dummy& dummy){
return (0 == 0 ? 2 : 0 * 0) + (2 == 0 ? 2 : 2 * 2) + (4 == 0 ? 2 : 4 * 4);

}

Now several things are known at compile time. Every condition is known at compile time and the
compiler will directly replace them with the good branch of the condition. Once the condition has been
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replaced by the body of the good branch, only a simple calculation (2 + 4 + 16) remains and once again
the compiler can optimize this code by replacing the computation with its result:

Listing 12: Optimized function

int computeDummy(Dummy& dummy){
return 22;

}

In this particular case, inlining is very interesting. Three function calls, three conditions and a compu-
tation with three additions have been avoided. Of course, this is an optimal case and we will certainly
not find an issue like this one in most of the analyzed programs.

Another advantage of inlining concerns the pipelining of modern CPUs. These CPUs use instruction
pipelines to optimize the code execution at runtime. A function may break the pipeline when it is
invoked and again when it returns. With inlining, we no longer have the problem because there is no
call to break the pipeline. The CPU tries to predict the branch taken after an instruction so that it
will not break the pipeline, so in some cases, the pipeline is not broken when a function call occurs. Of
course, once the function call is replaced with the body of the function, we can have more instructions
breaking the pipeline.

To the contrary, inlining has also several drawbacks. First, it increases, sometimes dramatically, the
code size of the application. It is especially a problem in embedded systems. It is not reasonable to
inline every function. This code size growth also has an impact in the compilation time because the
more code there are to compile, the more time it takes.

This increase may also cause Instruction Cache misses. A miss occurs when the instruction we want to
fetch is not in the Instruction Cache and the processor has to load it from the memory and copy it in
the Instruction Cache replacing another cache line, causing much delay. When a call site are inlined,
some instructions are duplicated, so the same group of instructions is at several different locations,
increasing the possibility of cache miss because executing the same function now needs several times
more Instruction Cache loads. It may cause a critical section of the code to not fit in the cache,
decreasing the speed of the whole application. Generally, it is better to optimize a code for Instruction
Cache instead of optimizing for reducing overhead of call because Instruction Cache misses cause more
overhead than a simple call.

Moreover, adding new code in an existing function may mean adding new variables. Generally, the
compiler tries to bind as many variables as possible directly to registers. If the number of variables
exceeds the number of hardware registers, a state called register pressure, the compiler has to put some
variables in RAM. Having variables in memory means that for every operation on this variable, there is
at least one operation in RAM. This process is called spilling. The memory access time is higher than
those of the registers, resulting in, sometimes significant, performance losses.
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To summarize, here is the list of the advantages and disadvantages of inlining a function call:� + no more call overhead� + possible improved optimizations� + pipelining improvements� - code size growth� - compilation time growth� - Instruction Cache misses� - Register pressure

2.5 Compiler inlining

Because this project is made for the Linux platform, this section talks about the gcc compiler. Some
of the information presented here will be very similar to other compilers, but there are some differences
about the strategies of inlining that the compilers use.

If you want to tell GCC to inline a function, you have to add the inline keyword in front of it. By
default, GCC will consider any member functions defined within the body of the class as inline (you can
use -fno-default-inline to change this behavior).

Telling GCC that a function is inline does not mean that GCC will inline it, it is a way to indicate that
this function is a candidate for inline substitution.

Even if the function is marked inline, GCC considers a function as unsuitable for inline substitution[10]
when the function:� is a variadic function� uses sized data types� uses the alloca instruction: allocation of memory on the stack� uses computed goto: a goto to value based on labels, not directly a single label� uses non local goto: uses the setjmp() function to save the stack environment and longjmp()

to jump to this saved environment. You can jump from one function to another using these
instructions.� uses nested functions: functions defined inside another function
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Moreover, most of these cases are generally considered bad practice and should only be used in extreme
case.

By default, gcc does not make any inlining unless you enabled the optimizations (-O3 ) or the specific
inline substitution optimization (-finline-functions). You can also specify that a function has to be
inlined even if the optimization is not enabled using the always inline attribute.

Once the inline substitution optimization is enabled, GCC will not inline every candidate. It will
heuristically choose which functions are simple enough to be inlined. Furthermore, GCC also has
several limits (maximum size of the function that can be inlined, maximum compilation unit growth
due to inline, maximum number of instructions for a function to be inlined, etc). All these limits can
be modified using command-line. GCC may also choose to inline only some call sites to a function. It
is possible that a call site is not eligible to inlining, for example, a recursive call within the definition.

Of course, the compiler has to know the body of the called function to inline it. That said, a member
function has to be declared and defined in the body of the class in the header file to be inlined. And
a global function also has to be defined in the header file. If a function is only declared in the header
files, it may be inlined in the same compilation unit as where it has been defined.

If every call to a static function is inlined and the function address is never used, GCC does not output
the assembler code for this function (unless you specified -fkeep-inline-functions). In the other cases,
the function can be called from other source files, so that GCC has to output the assembler code for
this function.

Some linkers can perform link-time optimizations, so they can inline some functions that the compiler
does not consider because they have a whole view of the application. But most of the time, these
linkers are still experimental. For example, GCC 4.6 has the option -flto to defers the optimizations to
link-time. Nevertheless, some tests of the ATLAS software team have shown that this feature was not
yet completely stable.
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3 Information extraction

This chapter presents the implementation details of the information extraction part of the project. This
part contains the graph reading, the call graph information extraction, the computation of information
from the call graph, and finally, the extraction of information from the object files.

3.1 Graph manipulation in C++

The first operation to implement was to open a DOT file and convert it to a C++ object. Of course, it
would have been possible to write everything from scratch, but graph theory is a complex subject and
a lot of time can be saved and a lot of bugs avoided, using an existing library.

There are several operations that we need the library to do:� open a DOT file� add information to nodes and edges� edit the graph (remove edges, nodes, edit information, . . . )� traverse the graph in different directions� manipulate large graphs (the ATLAS call graphs have more than 40’000 vertices and 160’000
edges) in an efficient way

One more important requirement about this library, is that it must be an open source library and that
the license includes no copyleft.

There is not a lot of known C++ graph manipulation libraries. Here are the ones we found:� Boost Graph Library (BGL)[11]� LEMON[12]� igraph[13]� OGDF[14]� LEDA[15]� AGraph[16]� NGraph[17]
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From these libraries, LEDA is not open source, AGraph and igraph are C libraries (they can be used
from C++, but they do not use C++ capabilities), and NGraph is too limited to handle graph as big
as ours, so that will allow us only three libraries in our case. We studied these libraries more in detail
in order to to choose one of them. Table 1 summarizes the results of our comparison:

Table 1: Comparison of C++ Graph manipulation libraries

Criteria BGL LEMON OGDF
Last update March 2011 September 2010 October 2010
License Boost Software License Boost Software License GPL V2 or GPL V3
DOT File Reader Yes No No
Add information Edges, Vertices Edges, Vertices No
Documentation Very complete Complete Basic
Examples A lot A few A few
Edit the graph Yes
Navigate the graph Yes
Performances Very good Better than BGL No information
Other Features More than necessary
Ease of use Complex Complex Relatively easy

This comparison is only valid in our special context, where we do not need a lot of specific features. For
a project with specific needs on graph manipulations and algorithms, this comparison should have been
done with deeper study.

For the performances comparison, we found a comparison including LEMON and BGL[18] showing that
the LEMON library provides more efficiency, but BGL has excellent performances. We have not found
any comparison or discussion about the performances of OGDF, but from what we saw, it should be
less efficient than the two others in manipulating large graphs.

An important information we saw about these libraries is that they are overkill for what we need, but
they are well-designed enough so we can use only a small part of the library without any problem.

After this little comparison, we chose to try the Boost Graph Library for several reasons:� a DOT File Reader is already included in the library, so that a lot of time will be saved� the library is complex, but we will use only a very little part of it, so that we avoid most of the
complexity� there are a lot of examples� the documentation is pretty good, there is even a book about the library� the library is well-known
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� the library is maintained regularly� it is part of the Boost C++ libraries which have a really good reputation in the C++ world� the library uses modern C++ capabilities� it is really fast

Our second choice would be to try LEMON, but BGL has the advantage of having a DOT graph file
parser included. We have not chosen OGDF because it is not possible to add information to the nodes
and vertices and there is not a lot of examples. Moreover, it also has drawing capabilities with graph
layout that are not interesting in our project and that can make our work a bit harder.

The version of BGL used for this project is the 1.46.1. The project is compatible with Boost 1.32.0 and
later. The older versions of Boost cannot be used because they do not provide bundled properties.

3.1.1 Boost Graph Library

3.1.1.1 Build BGL

The Boost Graph Library is a header only library, like most of the Boost C++ libraries. It means that
they are only made of header files that you simply have to include in your application. You do not have
to build it, just use it. There is only a little exception for Boost Graph, the DOT file reader that must
be built.

So first of all, we have to include the header files of Boost into our application. Listing 13 shows the
folder layout used for this project; it seems to be the most common layout for C++ projects.

Listing 13: Directory layout of the project

- root
| - src (*.cpp sources files of the project)
| - include (*.hpp header files of the project)
| | - boost (*.hpp header files of Boost)
| | | - graph (*.hpp header files of Boost Graph Library)

Then, once we have the header files of Boost in our application, we can build the Boost library. This
process is easily done using the tools provided by Boost. You just need several shell commands to launch
the build and the installation of the library into your system, as seen in Listing 14.

Listing 14: Build Boost Graph Library

cd /path/to/boost_1_46_1/
./bootstrap.sh --with-libraries=graph
sudo ./bjam install

Baptiste Wicht 22 of 83 August 11, 2011



Boost Graph Library is now built and installed in your computer. In the next section, this installation
will be tested.

3.1.1.2 Test BGL Installation

Once we have installed Boost, we can try if the installation was successful. For that, we used an example
taken from the samples of Boost Graph to read a DOT graph file from a string stream:

Listing 15: Read a DOT file in memory

#include <boost/graph/graphviz.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <string>
#include <sstream>

using namespace boost;
using namespace std;

int main() {
// Vertex properties
typedef property<vertex_name_t, string, property<vertex_color_t, float> > vertex_p

;
// Edge properties
typedef property<edge_weight_t, double> edge_p;
// Graph properties
typedef property<graph_name_t, string> graph_p;
// adjacency_list-based type
typedef adjacency_list<vecS, vecS, directedS, vertex_p, edge_p, graph_p> graph_t;

// Construct an empty graph and prepare the dynamic_property_maps.
graph_t graph(0);
dynamic_properties dp;

dp.property("node_id", get(vertex_name, graph));
dp.property("mass", get(vertex_color, graph));
dp.property("weight", get(edge_weight, graph));

// Use ref_property_map to turn a graph property into a property map
ref_property_map<graph_t*, string> gname(get_property(graph,graph_name));
dp.property("name",gname);

stringstream gv("digraph {graph[name=\"graphname\"] a c e [mass = 6.66]}");

bool status = read_graphviz(gv,graph,dp,"node_id");

std::cout << "Status : " << status << std::endl;

return 0;
}
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And then, a simple makefile is used to build this little program:

Listing 16: Makefile to test BGL Installation

CFLAGS = -Wall -c -g
LFLAGS = -Wall -g

read_graphviz : read_graphviz.o
g++ $(LFLAGS) -lboost_graph -o bin/read_graphviz bin/read_graphviz.o

read_graphviz.o : src/read_graphviz.cpp
g++ $(CFLAGS) -Iinclude -o bin/read_graphviz.o src/read_graphviz.cpp

clean:
rm -rf bin/*

This makefile compiles and links our program. We can run it directly:

Listing 17: Run the test

make
./bin/read_graphviz

And that should give us this result:

Status : 1

With a few commands, we have succeeded in compiling and running a program using Boost Graph
Library, and more specifically, the part that interests us.

3.2 Parse the call graph

We saw in Section 3.1.1.2 how to parse a graph file in DOT language format. But this was an example
using a graph with not exactly the same information as our graph from Callgrind. When using our tool
chain to create the DOT file from the Callgrind profile data, there are some additional properties for
a vertex, like module. If we try to read our DOT graph file using the last example, it will fail because
Boost Graph Library has no way to parse and store these properties.

In order to parse our call graph in a valid graph object we must tell BGL how to parse the properties.
Let’s take the module property of a vertex as an example: First, we declare a new type property and
install it for the vertices:

Listing 18: Declare a new BGL property

enum edge_font_color_t { edge_font_color };
BOOST_INSTALL_PROPERTY(edge, font_color);
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We must follow the BGL naming conventions for our property, if we do not, the compilation will fail.
Indeed, BGL uses macros, compile-time assertions and metaprogramming to verify the properties.

Then, we have to add this property to the list of properties supported for an edge. So,

Listing 19: Default vertex properties

typedef property < edge_weight_t, double > EdgeProperties;

becomes

Listing 20: Declare vertex properties

typedef property <edge_weight_t, double, property<edge_font_color_t, std::string>>
EdgeProperties;

The properties are chained one after the other using templates. And last, but not least, we have to tell
the reader how to bind the edge property to a property of the file, filling the dynamic properties:

Listing 21: Declare dynamic properties

property_map<Graph, edge_font_color_t>::type edgeFontColor = get(edge_font_color, *
graph);

dp.property("fontcolor", edgeFontColor);

And we have to repeat this operation for every property of the edges and vertices. Once every property
has been defined, we can parse the call graph the same way we did in Section 3.1.1.2. More than the
properties of the call graph, we also have to repeat these operations for each additional information that
we want to store for a specific edge or vertex.

3.2.1 Parse information

Once the graph has been parsed into a Graph object, we have to extract information from the labels.
In the DOT file, the information is all contained into labels, as presented in Listing 22.

Listing 22: DOT file label formats

Vertex label: ${name}\n${inclusive_cost}%\n(${self_cost}%)\n${calls}x
Edge label: ${cost}%\n${calls}x

We need to extract is all the ${x} parts of the labels.

To simplify the temperature calculations, these sub parts of the complete information are parsed into
other properties. To do that, we iterate on every edge and vertex to populate the specific properties
parsing the label using basic string manipulation.
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3.3 Compute information

Another information that we want to calculate is the frequency of each call site and function. We have
the number of calls, but this is not relative to the current application. To have a value relative to our
call graph, we have to compute frequencies. For that we need the total number of calls in the whole
call graph. We cannot obtain this information directly, we have to iterate through every function or
call site. There are at least as many call sites as the number of functions - 1, so we make the iteration
on the functions to compute the total number of calls, to save some time. We first iterate through the
functions to parse the labels and to compute the sum of the calls, then once again through the functions
to compute the frequencies and then through the call sites to make both operations at once.

Computing the frequency of a function or call site is really easy, as shown by Figure 2.

totalcalls =
∑

f∈callgraph

callsf

frequencycs =
callscs

totalcalls

frequencyf =
callsf

totalcalls

f : function

cs : call site

Figure 2: Computing the frequencies

3.4 Parse Object Files

The call graph lacks some features that may be useful for our analysis, like:� the size of the functions� the number of arguments of the functions� the information if a function is virtual or not

This information is available directly on the object files.
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We chose to test Dyninst[19] to extract this information. There are two ways to get information using
Dyninst:� parseAPI: extract control flow information from a binary file� symtabAPI: extract information from a binary file using the symbol table

The advantage of the parseAPI is that it does not need a symbol table in the binary file.

Nevertheless, parseAPI has a big flaw. It does not recover the parameters of a function. If you have
two functions with the same name (overload) in the same class, parseAPI will find two functions, but
we have no way to distinguish the two functions. On the contrary, symtabAPI can get the names of the
functions and even demangle the name to display a so-called ”pretty name”.

At first, we thought that this analysis would be possible even with a file without symbols, but it turned
out that it will not be possible. Indeed, without symbols, even Callgrind has no way to add function
names on the call graph. But, the good point is that ATLAS uses almost only shared libraries and the
symbols we need in a shared library are considered global and are never stripped, so we can assume that
the symbols will be present on the used libraries.

The size of the function is available from both libraries.

Because parseAPI does not have any information about the parameters of a function, there is of course
no way to get the number of parameters. In the case of symtabAPI, the number of arguments is only
accessible when the debugging symbols are available, but these symbols are stripped on a shared library
because they are not global. We decided to compute this number by hand from the function name
because neither of the two libraries provided a good way to compute the number of parameters. This
computation is not difficult to perform when we have the debug symbols or the global symbols of a
library. We have to count the number of commas in the function signature from the first left bracket to
the next right bracket. We must take several special cases into account:� a function with 0 parameters has the same number of commas than a function with one parameter,

so we must verify that there is a parameter inside the function parameter list� templates may also have commas, so we must not count any comma inside a template declaration� a function may take another function in parameter so that we must not count the parameters of
the second function
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Given that neither of the libraries can give us information about the virtuality of a function and that
symtabAPI give us more information about the function names, we chose to use this one for our analyzer.
But after some time, we realized that there were some reasons to do the job ourselves:� We parse only what we need to parse� We parse the library or the executable only once� We avoid the dependency on a heavy library. Indeed, parseAPI is depending on other Dyninst

APIs that we have to install

This was not a big deal because, as we will see in the next two sections, the search for the virtuality
and the search for the size of the functions are very similar. This is also more complexity added to the
project.

3.4.1 Detect if a function is virtual

Neither of the two tools provide a way to know if a function is virtual from an assembly. After searching
a long time for a library providing this feature, the only way we found to discover the virtuality of a
function was to read the assembly using, for example, readelf or objdump, locate the v-table and find
whether a given function is in the table indicating that it is virtual.

Of course, directly parsing the shared library file is by no way portable among compilers and architec-
tures, so this is only applicable in our specific case, but the application can be extended so we parse
files generated by another compiler or for another architecture. In this chapter, we are speaking of files
generated by gcc 4.3.5 in a Linux system on an Intel architecture.

If we are working with an executable, the debugging symbols must be present to find this information,
but with a library, all the needed information is global, so that we do not care about what is present or
not, it is present in any case.

Both the executable files and the shared libraries are in Executable and Linkable Format (ELF). This
format is relatively simple. It is made of one header followed by the file data organized in several
segments and sections. The segments contain the runtime data and the sections contain the linkage
and relocation data. It is a binary file and we need something to convert the ELF binary data into
something we can parse or extract data from. Indeed, implementing the binary parsing ourselves would
have taken too long.

The result of our search will be a list of functions that are virtual. In an ELF file, we can only find
the mangled names of the functions and the symbols. We could also have demangled all the names,
but the mangled name is lot shorter and so more interesting to store than the full name. This has a
performance advantage because we will use the mangled names as keys, so that keeping keys shorter
makes the search faster.

In a shared library, the addresses of the virtual tables are visible on the .dynsym section of the ELF
file. A virtual table can be identified by its mangled name, starting with ZTV, then the number of
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characters of the class name and finally the name of the class the v-table refers to. The addresses of the
functions are also in the same section and we can identify them using their mangled names. To read the
content of the virtual function table, we have to look at the .rela.dyn section. The v-table starts with
the virtual table address followed by the type information of the enclosing type. As a result, we have
the information about the functions of the v-table. Every function is encoded using eight bytes in an
ELF64 file and on four bytes in an ELF32 file. So we can easily identify whether function is present in
the virtual table or not.

In an executable file, it is slightly more complicated. The list of the functions are all present in the
.symtab segment of the file. Here again, we can identify the virtual tables from their mangled name. To
read the content of the virtual table, we have to parse the .rodata segment. But in this case, it is the
.rela.dyn section because the content of the virtual table is written four bytes by four bytes (or eight
bytes by eight bytes for a 64 bits executable), on the reverse order byte by byte. So, we cannot directly
bind the values from this segment to the values found in the symbol table, we have to parse the values
to find the corresponding functions. Again, the virtual tables contain not only functions, but also type
information for example.

The case of multiple inheritance is not difficult to manage. It means that there can be several virtual
tables for one type. In the case of virtual inheritance, it also changes the organization of the virtual
tables and their sizes, adding more offsets.

At the beginning of this research, we chose to use readelf directly from the C++ program to search the
virtuality of a function. We chose not to use libelf directly because the library is complicated to use
and in an old C-style. Our parsing is easy to do because we have at most two sections or segments to
read per ELF file and the only operation we have to do is to compute information from some links and
bind section together. It is not too difficult to make the string parsing directly by hand.

Some weeks after, we switched to an implementation using libelf for several reasons. First, we were
depending a lot on the implementation of readelf. On some computers, the output of readelf is not
the same, so our parsing would fail. Moreover, if the output of readelf changes from one version to
another, we have to adapt our implementation to take into account the new version of the output and
the analysis will not be backward compatible with the other versions of readelf. This is not an acceptable
limitation of our program. Furthermore, forking to another program adds a non-negligible overhead.
String computations have also a big cost that we can avoid working directly with the content of the ELF
file. We also improved the algorithms in order to be more efficient. Section 7.4 shows the considerable
performance savings using libelf in place of the old version.

The implementation using libelf is not easier, but the code more expressive, in that it expresses exactly
what we are extracting from the ELF file. Another advantage of using libelf is that we can check that
the format is really correct before parsing it, so we are sure to not fail during parsing. We are not
dependent on a kind of output because the library exactly represents the content of the ELF file so that
we are only dependent on the ELF format that generally does not change. Not using readelf means to
not benefit for the advantages it offers. For example, all the symbols are automatically resolved to their
string name in the readelf output. In our case, we had to read the symbols and bind them to their real
names that we obtain from the string table section.
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Detecting if a function is virtual is a good start, but it can lead to some false positives. Indeed, if we
invoke a virtual function in a static way by specifying exactly the function we want to call, we will have
no way of saying that the call is not virtual because we consider any call to a virtual function to be a
virtual call. We can think of some ways to avoid this problem:� We can read the instructions to identify how a specific call site is written and then detect if the

call is virtual or not� We can read the sources of the program to identify how the function is invoked

These two ways are expensive, For the first one, we need to parse the whole application assembly code
and for the second we will have to read the whole source code. But even doing that, we will still be
not sure of the result. We have to guess which statement is the call site because we cannot easily bind
a call site to an exact statement in the function. We can imagine that in a specific function there are
two call sites to the same virtual function, once called virtually and once statically. We can also face
the problem of inlining. Indeed, in the source code, it is possible that there are several call sites to a
function, but in the assembly there are only remaining call site to the function.

Even if neither of these ways is perfect, using one of these solutions will improve the detection, but
will also slow down the analyzer because we will have to parse the source source files or the binary
instructions to find information for every call to a virtual functions. In our case, we decided to accept
these false positives because they should be rare and the cost of avoiding them is higher than the benefit
of detecting them.

3.4.2 Find the size of the function

As we were going to parse the ELF ourselves we had to find a way to find the size of the functions
reading the ELF file. It turned out, this is quite simple to do. In an executable or a shared library, the
function list is kept in the symbol table. Every line of the symbol table represents a symbol, so we have
to parse the whole symbol table line by line to find every function. Identifying a symbol as a function
is really straightforward: it is identified by the type FUNC. The symbol contains also the demangled
name of the function and the size, decimal based.

The only difference for this search between a shared library and an executable is the name of the symbol
table: .symtab for an executable, .dynsym for a library.
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4 Information analysis

This section describes all that was done in order to analyze the information that has been computed
from the call graph and the object files.

4.1 Temperature

To choose which call sites and functions to inline, we apply a heuristic to all call sites and functions of
the program. The interest of inlining a specific function or call site is called its temperature.

The temperature function is not exactly the same for a call site or for a function because we do not have
the same information. Indeed, when we are looking at a function we have no information about the
library overhead. Also, it is generally more interesting to inline a specific set of call sites to a function
than the whole function.

Figure 3 shows the computation of the temperature of a given function.

temperaturef =
costf

size overheadf
∗ frequencyf

costf = 1.0 + parametersf ∗ 0.1 + virtualityf

virtualityf =

{

0.39 if f is virtual
0.0 otherwise

parametersf = number of parameters of f

size overheadf = 1.0 +
sizef ∗ (in degreef − 1)

totalsize

sizef = size of f in number of bytes

totalsize =
∑

f∈callgraph

sizef

f : function

Figure 3: Function temperature

First of all, to calculate the temperature of a function, we have to calculate the cost of its invocation.
To do that, we take 1.0 as the base cost of invoking a function and then we consider other parameters
increasing the cost of the call. That is calculated by costf . The unit of costf is a factor representing the
cost of the call compared to the cost of invoking the most simple function. To see where do the numbers
in costf come from, see Section 7.8.
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The function temperature represents the interest of inlining based on the benefits (the avoidance of the
invocation cost) and the overhead of inlining it. The overhead of inlining a function is calculated as a
ratio of the size growth of the whole application. We have to multiply the size of the function by the
number of call sites that call this function. We can remove once its size because if we inline all the call
sites of a function, they do not have to keep the function and we save the size of the function itself.
There are some cases where the function will not be removed, for example, if the function pointer is used
or if the user specified some command line option, but we do not consider these cases. This overhead is
represented by size overheadf and once again, the unit of this value is a factor representing the increase
of the application size if the function is inlined. And finally, we consider the most frequent functions as
more interesting using the frequency of the function.

Figure 4 shows how the temperature of a given call site is computed.

temperaturecs =
costcs

size overheadcs
∗ frequencycs

costcs = 1.0 + parametersdest ∗ 0.1 + virtualitydest + librarycs

librarycs =

{

0.39 if library(src) 6= library(dest)
0.0 otherwise

parametersf = number of parameters of f

size overheadcs =

{

1.0 if in degreef = 1
1.0 + sizedest

total size
otherwise

total size =
∑

f∈callgraph

sizef

f : function

src : the caller function

dest : the callee function

cs : call site

Figure 4: Call site temperature

As with the function temperature, we start by calculating the cost of the function call (the cost we
will avoid by inlining the call site). The calculation of costcs is almost the same as costf with the only
difference being that we have one more piece of information here. We know if the call is between two
libraries or not. If this is the case, we add a new overhead to the costcs. So the unit of costcs is also a
factor representing the overhead of this call compared to a simple function call. The numbers present
in this equation are explained in details in Section 7.8.

Next, we have to calculate the size overhead of the inlining. This overhead is simple to compute because
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we know that only one call site has to be inlined. If this call site is the only call site referring to the
function, there is no overhead because the function will be removed. The size overheadcs is also a factor
indicating the increase of the size of the whole application.

And finally, we are using the frequency of the call site (frequencycs) to ponder the temperature so that
a frequent call site will be more interesting to inline than a rare one.

4.2 Library issues

One of the goals of the project was to discover the functions that should be in the same library. To find
these functions, we chose a simple algorithm. Figure 5 shows the pseudo code of this algorithm.

1: callSites← every call site from src to dest with library(src) 6= library(dest)
2: for all cs in callSites do

3: if calls(cs) ≥Max then

4: src and dest should in the same library
5: else if calls(cs) ≥M then

6: find every path from dest to library(src) using edges in library(dest) with length(path) ≤ L

7: for all path in paths do

8: if minCalls(path) ≥ P then

9: src and dest should in the same library because of path
10: end if

11: end for

12: end if

13: end for

Figure 5: Find library issues algorithm

There are some lines that deserve more explanations. On line one, we iterate through every call site
and we only get those where the caller lies in a library different from the callee. For line six, we use a
depth-first recursive search with a maximum depth of L to compute all the paths between dest and a
function in the library of src, restricting the vertices to the functions only in the library of dest and src.
Finally, at line eight, we consider the calls of a path as the minimum number of calls for each call site.

Several parameters are used to limit the number of results of this algorithm:� Max: The maximum number of calls allowed for a call site between two libraries� M: The minimum number of calls to consider a call site between two libraries as a candidate� L: The maximum length of the path between src and dest. We use this parameter to improve
performances of the algorithm. Indeed, if L is a big value, we will follow some very long paths and
test every sub path of it.
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� P: The minimum number of calls to consider a path between src and dest as an issue

We use the parameters M and P to concentrate our efforts on the more important issues. In an application
where the hot functions are called millions of times, it is generally not interesting to be warned about
an issue with a path called three times.

As you can see, this algorithm detects two different things:� Very frequent call sites between two libraries. It can be an issue if a specific call site called millions,
or billions, of times between two libraries. If the source is not called often or the target do not call
a lot of functions, it can be very interesting to move the source, respectively the target function
in the other library.� Frequent call sites between two libraries that are part of circular link between these two libraries

After we found a library issue, it can be solved by moving a function from one library to another. But
we have two choices: we can move the function from A into B or the function from B into A. We
have enough information to decide programmatically which function should be moved to which library.
Indeed, moving a function F from X to Y has two consequences:

1. Every call to F from a function in X and every call from F to a function in X will now be library
calls

2. Every call to F from a function in Y and every call from F to a function in Y will now be a normal
calls

The first point adds more overhead to the application and the second removes overhead. So, the interest
of moving a function from one library to the other is only a matter of counting avoided and new calls.
Figure 6 shows in details the computation of the interest for a specific function moving from X to Y.

interestf = benefitf − costf

benefitf = |calls to f from Y|+ |calls from f to Y|

costf = |calls to f from X|+ |calls from f to X|

Figure 6: Library candidates

Now to choose which function to move, we have to compute the interestf for both choices and choose
the one with the biggest. If both interests are less than or equals to zero, none of the choices are good.
If there is a path with this library issue, we can also consider parts of the path as candidates to be
moved. It is perhaps interesting to move members of the paths and not only src and dest. What we
will test will depend on the case we choose, between:
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1. Moving src to the library of dest

2. Moving dest to the library of src

In the first case, we should also consider moving the end of the path, the other function in the same
library as src, to the library of dest. Of course, we have to test if the interest of moving it is greater than
zero. In the second case, we should consider the middle of the path (everything from dest to the last
call site, excluding these two) as candidates to be moved to the library of src. Once again, we have to
compute the interest of moving these functions. We decided not to break the path, namely if a function
in the path is not interesting to move, then we do not consider the following functions as candidates to
be moved in order to avoid breaking the path into multiple libraries.

Having a path going from a library A to a library B and then going again to A means that there is a
circular dependency between A and B, which is often a sign of a bad design. So we chose to profit from
the algorithm to detect every circular dependency between libraries. To detect every library circular
dependency, we can use the same algorithm giving the parameter specific values:� M = 1� L = inf� P = 1

Doing this, we will find all the circular references between two libraries. The problem with this algorithm
is that it can take a long time when analyzing a large call graph. What we really want is to find the
cycles among the libraries. If we represent the dependencies and the libraries in a graph, we have to find
the graph cycles and we have found the circular dependencies. The algorithm is detailed in Figure 7.

1: create a new graph G representing the libraries
2: for all callSite in callGraph do

3: src← library(source(callSite))
4: dest← library(target(callSite))
5: if G does not contain src then

6: add new vertex (src) in G

7: end if

8: if G does not contain dest then

9: add new vertex (dest) in G

10: end if

11: if src 6= dest then

12: add edge between src and dest in G

13: end if

14: end for

15: circularDependencies← find every cycle in G

Figure 7: Circular dependencies algorithm
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In line 15, to find the cycles in the graph, we use the Tarjan’s strongly connected components algorithm[20].
This algorithm has a time complexity of O(|vertices|+|edges|), so that the time complexity of our whole
algorithm is O(|callsites|+ |libraries|+ |dependencies|). It is a lot more efficient than the last algorithm
with specific values of M, L and P.

4.3 Clustering

An idea that was mentioned at the very beginning of the project was finding clusters of hot functions.
The idea was that inlining specific clusters at hot points of the application execution could be more
interesting than inlining single call sites across the whole application. A call site is considered hot if its
temperature is high. In our case, a cluster is represented by a vector of call sites.

The algorithm is relatively simple, as shown in Figure 8.

1: copy ← copy of the call graph
2: for all callSite in copy do

3: if temperature(callSite) < M then

4: remove callSite from copy

5: end if

6: end for

7: clusters← find every group of connected call sites in copy

Figure 8: Clustering algorithm

Basically, the graph is copied. Then, all the call sites that are not hot are removed from this copy. This
graph should now normally be constituted of several groups of call sites. Then, we have to find these
groups on the graph. To find these clusters, we use the algorithm described in Figure 9.
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1: clusters← empty list of clusters
2: for all function in graph do

3: if !visited(function) then
4: cluster ← empty cluster
5: findCluster(function, cluster)
6: if size(cluster) > 1 then

7: if size(cluster) > S then

8: reduce size of cluster to S

9: end if

10: add cluster to clusters

11: end if

12: end if

13: end for

14: return clusters

15:

16: findCluster(function, cluster)
17: if !visited(function) then
18: for all cs in out edges(function) do
19: add cs to cluster

20: findCluster(target(cs), cluster)
21: end for

22: for all cs in in edges(function) do
23: add cs to cluster

24: findCluster(source(cs), cluster)
25: end for

26: mark function as visited
27: end if

Figure 9: Find clusters in a graph

There are two parameters used to limit the results:� M: The minimum temperature value after what a call site can be considered hot� S: The maximum size of a cluster to avoid having too big clusters

Once we have found a cluster, we want to inline every call site contained in the cluster. The bigger the
cluster the harder it is to inline it. Therefore, we have to reduce the size of the cluster. For that we
chose to add a maximum size to the clusters. When a cluster contains more than S elements, we reduce
it by keeping only the hottest call sites. We also chose to not consider a cluster containing only one call
site because this call site will also be found in the list of the hottest call sites.

Another thing a user will perhaps do with a cluster is review this specific part of its code before doing
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anything else. A cluster is a hot group of call sites, so improving this application part can reduce the
temperature of the whole application.

4.4 Virtual hierarchy issue

Given that we have all the information about the virtual functions of the application, we can verify the
virtual functions hierarchies to see if they are really justified. What we call a virtual function hierarchy
is a set of all functions overriding a virtual base function (including this base function). For example,
the class B overrides z() of the class A, so we have two versions of the same functions, creating a virtual
function hierarchy.

The first operation we have to perform is to separate each virtual function hierarchy. The technique
used can produce several false positives because we do not have exact information about the inheritance.
The technique is simple. For every function name (without the type indication), we store every function.
Figure 10 shows the pseudo code of this search.

1: for all function in all virtual functions do
2: pos← start position of the function name
3: functionName← substr(function, pos)
4: insert function in the hierarchy of functionName

5: end for

Figure 10: Search the hierarchies of virtual functions

Once we have all the hierarchies, we have to calculate the number of times each function has been called.
We have to fill a map of function calls from the call graph because not every function is in the call graph,
and then we can match the number of calls for every virtual function of the hierarchy.

We do not consider the groups with no called functions because they have no cost and are not interesting
to optimize.

We can now search for some patterns that can be issues pertaining to virtual function hierarchies. Here
are the patterns we look for:� Only one function is called on the hierarchy� One function is called more than X% of the time� Less than Y% of the functions are called� The hierarchy contains only one function

In these cases, we may consider the possibility that there is something wrong in the virtual hierarchy.
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Because of the lack of information about the inheritance tree, some hierarchies are almost always present,
like the destructors and the default constructors. We can easily filter these hierarchies using the deman-
gled name because they are not of particular interest at this point.

4.5 Statistic reports

Because we have a lot of information about functions available in the application, we thought that it
was a good idea to produce some statistic reports. A statistic report is a list of functions or issues that
we give to the user. This can be just some information, but this can also point to some bad practices.

Of course, the first reports to be displayed are the ones showing the hottest call sites and functions of
the applications. But we display some more reports not depending on the analysis. For example, here
are some statistic reports provided by the application:� The functions that take most of the run time� The biggest functions in the application� The tiniest functions in the application� The functions with the greatest number of parameters� The most called function and call sites

These statistic reports can be helpful to the user in order to have a better knowledge of the analyzed
application.

When applied to program performances, the 80-20 rule (also known as the Pareto principle) states
that, in general, 80% of time spent is only on 20% of the code. So, we added a statistic report to the
application displaying in what percent of the functions 80% of the time is spent and displaying the list of
these functions. It turned out that this percentage was way lower than 20% in our analyzed applications.

More than simply giving lists of information, we also reported an issue that can be easily detected:
functions with too many parameters. By default, a function is considered over-parameterized if it has
more than 10 parameters, but this value is configurable. With all the available information, we can add
new issues in the future.
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5 Design

During this project, we chose to follow an object-oriented style for the code. We represented the part
of the call graph using objects (Function, Callsite) and created several classes to manage the different
part of the analysis. We also tried to use a design that will be easy to use by the developers that want
to use the analyzer as a library.

Figure 11 shows an UML class diagram of the library.

AnalyzerCallGraph

Infos

Inlining

Parameters

<<use>>

<<use>>

<<use>>

Reports

<<use>>

<<struct>>

CallSite

<<use>><<use>>

Graph

<<create>>

<<use>>

GraphReader

<<struct>>

Function

Figure 11: Class diagram
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Here are some explanations about the classes and their roles in the application:� Graph: The basic Boost Graph Library graph structure.

– Function: Represents a function in the graph, it is used as identifier for a function.

– CallSite: Represents a call site in the graph, it is to identify a call site.� CallGraph: Class used to encapsulate the raw graph and provide some utility functions to make
easier the manipulation of the graph. This is also the class that we use to get information about
the call sites and functions.� Inlining : Helper class to launch a full analysis on a given call graph file.� GraphReader : This class is responsible to read the graph from the DOT file and then to parse the
information of the labels.� Infos : Class used to parse the ELF files. Contains the information about the virtuality and the
sizes of the function. We can also use this class to get the list of all the virtual functions of the
application.� Analyzer : Contains all the functions necessary to analyze the call graph. This is the class respon-
sible for all the algorithms like the temperature calculations, the clustering or the library issues.
This class contains only functions that return data, no reporting functions.� Reports : Display the information extracted by the analyzer and output some statistic reports
produced by reading the call graph. This class only outputs to the console what it can get from
the Analyzer or from the CallGraph fro the statistic reports.� Parameters : Contains all the configurable parameters of the algorithms. Can be used to set the
values of the parameters or to retrieve them. This class is used by the Analyzer and the Reports
classes in order to compute or display information.

With this design, the user is able to use the analyzer in two ways:

1. basic: Use the Inlining class, configure the parameters and launch the analysis. The result will
be the same as invoking the tool from the command line, but everything is configurable program-
matically. This can be useful to integrate the analyzer inside another command line tool.

2. complete: Use the other classes and choose exactly what the application wants to do on the call
graph and which analysis have to be launched. This is useful if the user wants to customize exactly
what should be printed or get the information and analyze it.
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6 Tests

This section describes the tests that have been done in order to see if the results provided by the analyzer
were interesting or not.

6.1 Tests on a real life application

Once the analyzer has become mature, it was time to start testing it.

Generally, the inlining tools are working at the compiler level. It seems that it is the compiler that
chooses directly what to inline, generally heuristically. Testing them is easy. To test a change in a
heuristic, we have to compile the analyzed application again and compare the execution time of the new
application with the old compiled version. In the case of this application, it is a bit more complicated.
Indeed, we are not working at a compiler level, the issues are intended for the developer and it is up to
him to implement the issues in the analyzed application.

So, if we want to compare two versions of a temperature function, we have to analyze the profiled
application twice (with both versions of the analyzer) and to apply the proposed solutions for both
versions. And then compile both versions and compare the execution time of the two resulting executable
files. It appears similar to the way a compiler level heuristic is tested, but the difference is that for us,
the issues have to be resolved directly by hand in the source code. This implementation requires a good
understanding of the analyzed tool and the used compiler and, of course, requires a lot more time.

Generally, it is better to test an analyzer like this one on several different applications, but we did not
have enough time to test the analyzer on several tools, so we decided o choose only one tool. To choose
the application to test the analyzer on, we decided that the tool:� had to be open source� had to be enough complex to be interesting� had to be object-oriented� had to be easily testable� had to be easily modifiable� had to run enough long to provide good benchmark results� ideally had to work on different inputs

Based on these criteria, we decided to use CLang[21] as the application to test our analyzer on. CLang
is a compiler for C, Objective-C and C++ based on LLVM[22]. Both LLVM and CLang are heavily
object-oriented and the source code is very well maintained and commented. We can take advantage of
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the fact that it is easy to test it on several different inputs to see the impact of our optimizations on
input different from the one used when we profiled the application.

The tested version of CLang is the revision 134999 checkout from the LLVM SVN repository.

Once the tool has been chosen, we used Callgrind to generate a call graph of the compilation. We
compiled the analyzer itself with CLang. Then, we analyzed the call graph to find the issues and to test
implementing them to see the impact of performances.

The detailed results of the analysis are available on the Section 12.2.

We decided to create several versions of CLang to bench them and test the saving of the inlining. Here
are the versions of CLang we tested:� base: The normal version of CLang� cluster 1 : Inline the first cluster� cluster 2 : Inline the second cluster� callsites 1 : Inline the hottest call site� callsites 2 : Inline the 2 hottest call sites� callsites 3 : Inline the 3 hottest call sites� callsites 4 : Inline the 4 hottest call sites� callsites 5 : Inline the 5 hottest call sites� functions 1 : Inline the hottest function� functions 2 : Inline the 2 hottest functions� functions 3 : Inline the 3 hottest functions

The benchmark is made using a simple shell script. The script launches 100 times each version of the
compiler and then computes the mean of the execution time. For each compilation unit, the compiler
is launched twice at the start without timing it in order to be sure that the files are cached and to not
discriminate the other runs. The versions of CLang are tested on the compilation of two programs:� The analyzer itself� The EDDI compiler[23]
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The results of the benchmark are presented in Table 2.

Table 2: CLang performances

Version
Analyzer eddic

Time [s] Difference Time [s] Difference
base 5.11713 0 0.98423 0
cluster 1 5.08705 -0.588 % 0.98256 -0.170 %
cluster 2 5.1034 -0.268 % 0.97007 -1.439 %
callsites 1 5.11585 -0.025 % 0.98123 -0.305 %
callsites 2 5.1129 -0.083 % 0.98093 -0.335 %
callsites 3 5.11245 -0.091 % 0.97708 -0.726 %
callsites 4 5.09759 -0.382 % 0.97614 -0.822 %
callsites 5 5.08783 -0.573 % 0.97574 -0.863 %
functions 1 5.09727 -0.388 % 0.99382 +0.974 %
functions 2 5.03564 -1.592 % 0.97889 -0.543 %
functions 3 5.027 -1.761 % 0.97589 -0.847 %

In the case of the compilation of the analyzer itself, every change led to some performance savings.
The clusters seem interesting. Indeed, the first cluster has a temperature corresponding to the first
four call sites and the result of inlining the first cluster is better than inlining the first four call sites.
The second cluster also produces good results and its temperature is twice as low as the first one. But
the most powerful optimization is to inline whole functions. We have more than one percent and a
half performance improvements by inlining three functions. Of course, inlining a whole function has
generally a greater effect on the size of the executable files.

The savings of inlining a call site or a function is not totally relative to the temperature. The first call
site is not the one that allows the biggest savings and the situation is the same for the function. This
can be explained by the fact that our heuristic do not take into account all the parameters that influence
the cost of the function call. It is also possible that the heuristic can be improved to weight differently
some of the parameters.

Even if the results are less important in the case of compiling eddic, there are some savings. The only
case that does not result in some savings is the inlining of the first function that results in a loss of
about one percent. We can also see that, the second cluster is several times better than the first one.
For the call sites, it is even more interesting to inline them in the case of eddic, but inlining functions
does not produce as many results as on the analyzer.
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In our case, the executable growth is not really important, as shown in Table 3.

Table 3: CLang executable size

Version Executable size [bytes] Difference
base 41612841 0
cluster 1 41625171 +0.0296302769%
cluster 2 41630316 +0.0419942488%
callsites 1 41624451 +0.0279000417%
callsites 2 41624427 +0.0278423672%
callsites 3 41625051 +0.0293419043%
callsites 4 41625051 +0.0293419043%
callsites 5 41624463 +0.027928879%
functions 1 41606656 -0.0148632005%
functions 2 41631478 +0.0447866561%
functions 3 41631874 +0.0457382854%

The code growth is not directly related to the number of call sites inlined. Indeed, inlining three functions
should grow the code size much more than inlining eight call sites of the second cluster, but this is not
the case. This is due to the optimizations the compiler can do when we inline something. Moreover,
the instructions needed to make the function call are removed from the code, so very small functions
are smaller than the instructions necessary to invoke them.

In this specific case, the order of magnitude is really small between both versions, but in some cases,
it is possible that it turns out to be an issue, is especially in embedded software where the code size is
critical.

To conclude these tests, the solutions given by the analyzer are producing good results in the case of
CLang. We can also say that the results are strongly dependent on the input with which we profiled the
applications. It is very important to optimize the applications with the most general input. Furthermore,
here we tested only one application and it is not proved that the analyzer will produce the same results
for another application, the results can be worse or even better.

These tests show that the clusters are interesting without being spectacular. Indeed, at the same
temperature, it is better to inline a cluster than single call sites. The problem is that, for the same
temperature, we had to inline more call sites for the clusters than for the call sites. It is also possible
that is some applications the clusters are just containing the hottest call sites.

Somebody may think that the results are not really important, but by inlining only five call sites we were
able to save half a percent and inlining three functions saved more than one and a half percent. The
saved time looks ridiculous here, but when we compile large programs the run time can be important,
so even little savings can save a lot of time when we are compiling often. If we take the ATLAS software
as an example, some jobs are taking hours to process. When every hour of computing has to be paid,
one percent starts to be an important number. 1% saving on the ATLAS software allow the experiment
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to save 100K$ per year. As the project was targeting large-scale programs, we can assume that the run
time of such applications is generally quite big and expensive.

6.2 Tests on ATLAS

After some time, I had the opportunity to test the analyzer on ATLAS itself. This was a good test for
the analyzer because the application has been designed for this kind of application which is large scale
object-oriented programs. Moreover, ATLAS is very large, so it is also a good performance test to run
the analyzer on an ATLAS call graph.

The whole analysis was made on a Linux 64 bits machine located at CERN in Switzerland.

Once we solved some problems on the machine, and on the code, we managed to run the full analysis
on the ATLAS call graph.

The provided call graph contains 44’431 functions and 164’918 call sites. The number of libraries used in
this call graph is 790. This is not the kind of graph we had tested before, so as explained in Section 7.7,
it was an excellent opportunity to test the performances of the analyzer.

We have not implemented the results in the ATLAS source code. It would have taken too much time
to implement the solutions and then to compare different versions. Not only changing the source code
is hard, but compiling the whole ATLAS software is a long process and running it is even more time-
consuming, so benchmarking several versions of ATLAS was not conceivable.

So, instead of implementing the results, we submitted them to the ATLAS software development team
that studied them. They know the software very well and have already run several profiling tools and
analyzer on it, so it was easy for them to evaluate the relevance of the results. Finally, it turned out
that the results were very close to what they knew were critical in the ATLAS software. Also, they were
very interested by the results that they had not before, like the virtual hierarchy issues or some library
issues.

6.3 Generated application

As we saw that the tests of the analyzer would be very hard, Noé Lutz, the project’s expert, had the
idea of generating an application from the call graph and then executing the tests on the generated
version instead of the real application.

This approach has some advantages:� it is easier to edit the generated application than to edit the real one that we do not know well.� it is faster to compile� it is easy to bench (some programs are not easy to bench, especially if they create multiple processes
or threads, if they take a special kind of output, if they take very long to run, etc.)
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Of course, the savings we can obtain in the generated application are absolutely not guaranteed to be
the same in the real one. It is possible that improving the performances of the analyzed version can
lead to a loss of performance in the real one.

As the idea was interesting and quite original, we decided to spend some time to study the idea of an
application generator. The idea was to generate a program close to the original based on the call graph
and shared objects information. The point is that the call graph of the two applications should be the
closest possible.

It turned out that it was far from easy to generate an application close to the original one.

If we want to define a function, we have to decode the function signature to know what the parameters’
types are. Indeed, we cannot only put the demangled name as the name of the function because we have
to know the exact type of the parameter. If it is not a built-in type, it will not exist in our application.
A solution is to parse the object files in order to find the type information and to reconstruct classes and
structures, but there is no guarantee that the compiler will output the type information and it is very
compiler specific and it will be hard to reconstruct them using only assembly information. Even the use
of the standard library is problematic because we have to know which package we have to include in the
file to compile it. Moreover, the mangled name of a function does not include any information about its
return type, we have no other choice but to choose arbitrarily one return type for each function. The
easiest way to reconstruct the classes and the return types of the function would be to parse the source
code of the application, but that kind of parsing is expensive because there are a lot of files and C++
is one of the hardest languages to parse.

In the case of a member function we also have to reconstruct the object and put the function as a member
of this object. But if we do that, we have to manage instances of the object to invoke the function. So,
we have to analyze the call graph to find the constructor calls to create new objects and then use them
at the right place to invoke the functions. But the information can be misleading, because there are a
lot of implicit copies and destructions that are made. If the function is virtual, we also have to recreate
a virtual hierarchy of functions and an inheritance tree with possible multiple or virtual inheritance.

Once we have all the generated function declarations, we have to define them. That involves other issues.
We do not know the order in which the call sites are invoked. Also, we do not know if the function
invokes each of its call sites each time it is invoked. For example, a function can call the first call site
200 times the first time the function is invoked and then only call the second call site the next times it
is invoked. It is very hard to calculate the number of times we have to call each called functions from
a function. We can only make approximations and these can lead to a loss of precision because we will
add some conditional statements or loop to emulate the behavior of the application.

Once we succeeded in recreating the structure and the calls among functions, we have to make these
functions doing something. Indeed, if we put only function calls in the function body, we will not have
something near the real application. We can generate some basic code in each function in order to match
more or less its sizes. But of course, the goal is not to recreate the code, we only want that the cost
and the size are relative to the original one. It is sure that the time passed in the functions will not
be the same as the real one, but that is not a disadvantage because a faster application will be more
convenient to profile.
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Another problem would be if the profiled application is multi-threaded. If we use the call graph from
Callgrind, we will have no information about the threads, so we can only generate a single threaded
application that can be very different from the base version. There are no good solutions to this problem,
it is a limitation that we have to accept on the generated version.

If we want to generate the closest possible application, we have to create several libraries, compile them
and configure the linker. The best solution will be to generate a makefile to build each library and the
executable automatically.

Of course, we want to prevent the compiler from making too many optimizations that could break our
call graph. The best solution is simply to disable all the optimization flags of the compiler.

To conclude, the idea remains interesting and it could be a good track to test automatically some
changes in the analyzer, but writing a good application generator would take a long time in order to
have a generated version enough similar to the original. That could be an entire project.
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7 Performance Analysis

The call graph of a standard ATLAS reconstruction job is a large graph with about 40’000 vertices and
160’000 edges. So, we have to pay attention to the fact that the analysis of this graph has to be made
in a reasonable amount of time.

Generally, the graphs are put in two main categories:� Sparse: when the number of edges is about ten times the number of vertices� Dense: when the number of edges is about the square of the number of vertices

In the context of call graph, the graphs are generally very sparse. So for this benchmark we will take
only sparse graph in consideration. For our benchmark, we will test the performances for graphs of
size 100, 1000, 10000, 40000, 100000. The graph of size 40000 is here because it is about the size of an
ATLAS benchmark. At the beginning, we also wanted to test a graph with one million edges, but it
turned out that the computer used for the benchmark did not have enough memory to analyze a graph
of this size.

All the results presented in this section are based on a computer with an Intel Core i7 at 1.73Ghz on
an Ubuntu 11.04 and the sources are compiled using gcc 4.3.5 in 64 bits.

The graph used for this benchmark is an adjacency list using vecS for storing both the edges and the
vertices. The graph uses bundled properties to store the information of every edge and vertex.

The benchmark is really simple. Every tested part is executed on five different graphs and the mean
of the different executions is computed. We take five different graphs because the efficiency of some
algorithms depends on the input so that the results are more accurate if we take several input files.

The tested graphs are randomly generated by a little tool written for this purpose. It creates a DOT
file with the good number of edges and vertices. The functions have a random number of parameters
between 0 and 10. The function names is the same except for a numeric index appended to the function
name. The number of calls of the call sites and functions is also randomly generated. To add an edge,
we take two random vertices and create a new edge between them. The costs are randomly generated
with a max value based on the application size. Finally, we generate a number of libraries depending
on the number of functions and we randomly bind them to the functions.

When the benchmark is running, the libraries do not exist, so the function sizes and the virtuality are
randomly generated. The function size is a random number from 1 to 1000 and a function has one on
six chance to be virtual.
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7.1 Importing the whole graph

First of all, the import of the whole graph from the DOT file involves creating a Graph, reading and
parsing a file and adding many edges and vertices to the graph.

Table 4 presents the result for importing a whole graph with the Boost Graph Library.

Table 4: Importing a DOT graph performances

Number of vertices Time [s]
100 0.048
1000 0.455
10000 4.031
40000 16.855
100000 43.666

It is a costly operation, involving a lot of file file reading and memory allocations. However, the time is
increasing linearly so we are sure that the needed time will not explode for some graph sizes.

In most cases, this operation the most important part of the runtime. In the case where there are many
shared libraries to parse, the parsing consumes more time than the reading operation.

7.2 Parsing information about the graph

Here, we calculate the time needed to parse the information contained in the graph. The computations
are done with the information contained in the call graph, like frequency, labels parsing, etc. In the real
analyzer, these operations are done in the same time as the graph importing. Here, we decoupled both
parts in order to bench them separately. Table 5 summarizes the results of this benchmark.

Table 5: Performances of parsing the graph

Number of vertices Time [ms]
100 6.955
1000 26.4922
10000 266.178
40000 1041.000
100000 2608.780

It is a very fast operation. It is a matter of iterating through every edge and vertex, parsing some string
information and computing some totals. The time complexity of the parsing is linear in O(|V |+ |E|).
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7.3 Navigating through the whole graph

We tested some graph traversal algorithms to see how long these computations take. It is not an
operation of the analyzer, but it is an important operation used by almost every part of the application.

First, we tested a simple foreach loop on every vertex and then on every edge using the iterators of the
graph. For each element, we get the value of a bundled property. Table 6 shows the benchmark results.

Table 6: Performances of foreach loops on graph

Number of vertices For each vertices [ms] For each edges [ms]
100 0.0072 0.0812
1000 0.0544 0.6354
10000 0.5572 6.8290
40000 2.1848 27.0398
100000 5.4716 68.2002

The order of magnitude between the two traversal techniques is a bit more than ten. This is probably
because the edge descriptor is three times bigger than the vertex descriptor. The edge descriptor conveys
information about the source and the destination of the call site and the identifier of the edge. But,
even for a very large graph, these operations are fast.

Then we tested two well-known traversal algorithms: breadth-first search (BFS) and depth-first search
(DFS). The results are summarized in Table 7

Table 7: Performances of graph traversal algorithms

Number of vertices DFS [ms] BFS [ms]
100 0.019 0.008
1000 0.435 0.096
10000 8.637 1.885
40000 103.342 41.515
100000 284.324 136.483

The DFS traversal is about two times slower than the BFS traversal once we use a large enough graph.
Although both algorithms have the same time complexity O(|V | + |E|), in the case of our random call
graphs, it appears more efficient to use BFS than DFS. But, the space complexity of BFS, O(|V |+ |E|),
is greater than DFS, O(|V |).
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7.4 Getting information about the functions

The parsing of the libraries is independent from the graph size. It depends on the size of the libraries
or executable files. Furthermore, the number of virtual tables and virtual functions in the ELF format
also matters because it will be more costly to parse.

We separated the benchmarks in two parts; one for the executable files and one for the shared libraries.
The algorithm to get the information is not the same.

We tested the old version forking to readelf and the last version using libelf.

For this benchmark, each file is parsed twice without measuring the time and then we take the mean of
the 25 next executions as the time needed to parse the given library.

We selected several different executable files for this benchmark:� clang: The CLang compiler, 39.7MB� skype: The Skype application, 20.4 MB� inlining: The analyzer itself, 407KB� eddic: The EDDI compiler, 357KB� virtual: A very little executable created for testing purpose during this project, 14KB

Table 8 presents the results of this first part of the benchmark.

Table 8: Performances of parsing an executable

Executable readelf version [ms] libelf version [ms] Factor
clang 3633.870 179.963 20.192 %
skype 1375.760 5.015 274.329 %
inlining 23.940 1.720 13.919 %
eddic 23.511 2.423 9.703 %
virtual 6.796 0.322 21.106 %

We also selected several different shared libraries for the second part of the benchmark:� libCaloCalibHitRec: One ATLAS library, 1.2MB� libRooFitCore: An ATLAS library for matrix computations, 10.7MB� libGaudiSvc: One library of the GAUDI framework, 6.6MB� libdyninstAPI: The base library of Dyninst, 45.3MB
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� libinstructionAPI: The library of Dyninst InstructionAPI, 3.9MB� libclang: The library of CLang, 14MB� libEnhancedDisassembly: Another CLang library, 22.3MB� libLTO: A CLang library, 20.8MB� libwireshark: The library of Wireshark, 44.4MB� libQtWebKit: The web kit library of Qt, 21.2MB

We selected more shared libraries because ATLAS contains a lot of libraries.

The results are summarized in Table 9.

Table 9: Performances of parsing a shared library

Shared library readelf version [ms] libelf version [ms] Factor
libCaloCalibHitRec 134.960 9.138 14.769%
libRooFitCore 719.153 61.305 11.731%
libGaudiSvc 672.829 49.149 13.690%
libdyninstAPI 393.535 42.411 9.279%
libinstructionAPI 26.194 2.100 12.473%
libclang 294.806 1.723 171.100%
libEnhancedDisassembly 474.755 1.146 414.271%
libLTO 407.333 1.148 354.820%
libwireshark 1072.600 12.736 84.218%
libQtWebKit 842.977 4.904 171.896%

The difference between the two algorithms is really large. The main reason being that we do not read
the whole file, we read only what we need. So, if there is no virtual table, we do not read the sections
containing the content of the virtual tables. We also avoid the cost of forking to another program and
the cost of reading twice the library. readelf has to read the library to produce the output and then we
read again the output as it was the shared library. Lastly, we acquire information by reading bytes by
bytes, not by parsing everything into a string and using expensive string operations to find the good
piece of information.

Using the first version could have been a performance bottleneck in the analyzer, but with the new
version, the amount of time needed to read even a huge shared library is totally acceptable. However,
in the case of an ATLAS call graph with hundreds of libraries, this operation is the slowest. We have to
note that the old version of the algorithm could have been more optimized but absolutely not enough
to be more efficient than the new one.
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7.5 Analyze the graph

We tested the performances of the computation of the temperature for the call sites and the functions.
This computation is a matter of iterating through each edge and vertex and computing the temperature.
Table 10 summarizes the results of this benchmark.

Table 10: Performances of heuristic calculations

Number of vertices Functions [ms] Call Sites [ms]
100 0.004 0.083
1000 0.036 1.100
10000 0.298 15.119
40000 1.228 101.655
100000 3.178 298.234

The computation for the call sites is about hundred times slower even though there are ten times more
call sites than functions. This is explained by the fact that the computation of the temperature for a
call site is more complicated than for a function. Moreover, this is slowed by the fact that iterating
through call sites is slower than through functions. But once again, the complexity of the algorithm is
linear.

We also tested the performances of the different analysis algorithms.

First, the performances of the clustering algorithm have been tested. For this algorithm, the perfor-
mances can depend on the input because we are searching paths between functions. That is the main
reason why five different random graphs are used to test the performances of the application. Table 11
presents the results of the clustering algorithm.

Table 11: Cluster algorithm performances

Number of vertices Time [s]
100 5.444
1000 345.896
10000 89.564
40000 490.102
100000 1372.240

The results are not increasing linearly but a bit less. This is due to the fact that the temperature has a
tendency to be lower for the call sites when the size of the random graph increases. And the clustering
algorithms performance depends on the number of hot call sites in the call graph.

Then, we tested the library issues search algorithm, for which you can see the results in Table 12.

Baptiste Wicht 54 of 83 August 11, 2011



Table 12: Library issues search algorithm performances

Number of vertices Time [s]
100 12.034
1000 119.752
10000 543.164
40000 3296.600
100000 10331.500

This time, the algorithm is not absolutely linear, but has a complexity a bit higher, without being
linearithmic or quadratic. If the parameters of the algorithms were higher, that will lead to an algorithm
being exponential.

The circular dependencies search algorithm has also been tested, as you can see in Table 13.

Table 13: Circular dependencies search algorithm performances

Number of vertices Time [s]
100 2.334
1000 25.938
10000 279.088
40000 1266.770
100000 3399.030

Again, the algorithm has a linear complexity.

In conclusion, none of the analysis algorithms is time consuming, even when applied on a large graph.
The performance bottlenecks of the application are located on the graph reading and file parsing oper-
ations.

7.6 Memory usage

Even if it is not directly performance-related, the memory used by the analyzer is also an important
factor. We measured the used memory for the graph of the application. For that test, we read the graph
from the random graph and measure the memory usage directly after the reading of the graph. Table 14
presents the
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Table 14: Memory usage of the graph

Number of vertices Memory usage [MB]
100 2.867
1000 8.390
10000 63.804
40000 248.488
100000 618.082

As we measure the memory usage of the whole application, the result is not really precise for small sizes.
For graphs with 10’000 vertices and more, the memory usage starts to be stable. We can estimate the
memory usage to about 6.4KB for each new vertex (and its 10 call sites).

The memory usage is not negligible and grow up quickly. We can estimate that having a graph with one
million nodes would require about 6GB of memory. In our case, it is not an issue because the computers
where will run the analyzer have enough memory to handle such big graph, but this will perhaps not
be the case of the users of the application.

If we wanted to reduce the memory consumption of the analyzer, there are some tracks that can be
followed:� reduce the number of properties. Each property of the graph takes some memory for each element.

One thing we can imagine is to rewrite the DOT file reader to parse directly the labels and so to
not store it in the graph because it is redundant with the properties used to store the information
contained in the label. If really necessary, we could also calculate some data every time we need
it like the frequencies or the number of parameters instead of storing it, but that would of course
decrease the performances of the application.� use another graph structure. The last versions of Boost Graph Library includes a new graph
structure, compressed sparse row graph that takes less memory to store the edges and vertices.
The biggest difference is that this structure is immutable. We cannot add or remove any edge
from the graph once it has been constructed, but we can edit the properties of each element. Once
again, we would have to rewrite the DOT file reader in order to know the number of functions and
call sites before creating the graph.

7.7 Tests on ATLAS

Although it is not really a benchmark, the tests on ATLAS allowed us to find performance issues and
to fix some of them.

At the beginning of the tests on the ATLAS call graph, the performances were not very good. Indeed,
the full analysis took about 30 minutes. At first, we thought it was because of the library parsing, but
after some profiling we realized the time was spent in using the information parsed from the files. After
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the parsing of every library, more than 700’000 functions were in memory and simply searching into
these functions was taking most of the time. Actually, the containers were not used in an efficient way.
Once we fixed this problem, a single run took only about two minutes.

We also improved the performances using hash tables instead of red-black tree to store this information.
The search in hash tables can be done in amortized O(1) complexity, compared to the O(logn) for the
red-black-tree structure. Using these new data structures saved about a third of the run time, allowing
a full analysis to only last about 80 seconds. We used the implementation of TR1 provided by gcc.

When working on the graph with demangled names, we have to demangle the name of the function
taken from the library. It turned out that the demangling was more expensive than we thought. After
optimizing the algorithms to use as few as possible demangling, the run-time of the application has been
improved by an order of magnitude of 2.

7.8 Function call

In order to estimate the cost of a function call, we developed a small benchmark to weigh the different
parameters taken into account for a function call.

For this benchmark, each function tested is invoked two million times. The elapsed time is then calcu-
lated. This process is repeated 12 times and the mean of the last 10 samples is taken as the result.

We started to bench the impact of the number of parameters for a function call. We have created several
versions of the same function with a different number of parameters and invoked then directly with the
same parameters value. Table 15 shows the result of this benchmark.

Table 15: Overhead of long parameters

Number of parameters Mean [ms] Factor
0 4428 1.00
1 4723 1.06
2 5156 1.16
3 5446 1.22
4 5828 1.31
5 6569 1.48
6 7472 1.68
7 8019 1.81
8 8610 1.94
9 9260 2.09
10 10031 2.26

The overhead of each new parameter is not negligible. If we take the mean of the differences divided by
the number of parameters, we find 10% of overhead for each parameter. All the parameters are 64 bits
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long so that each of them fit on a register. Moreover, this is also the size of a pointer, or a reference,
so, we can easily interchange what we want in this number of parameters.

To verify if the size of the parameters matters when they fit in registers, we also made the test using
int, encoded using 32 bits. The results are presented in Table 16

Table 16: Overhead of int parameters

Number of parameters Mean [ms] Factor
0 4428 1.00
1 4687 1.05
2 5025 1.13
3 5707 1.28
4 6194 1.39
5 7077 1.59
6 7660 1.72
7 8576 1.93
8 8739 1.97
9 8884 2.00
10 9691 2.18

The results are about the same as the results for long parameters. Copying int or long results has the
same cost, so that the overhead on the function call is about the same.

More than the number of parameters, we also tested the impact of the size of parameters in the case
of pass by value. The used objects are simple objects containing only an array of longs. The size is
changed for every class using a greater array. Table 17 summarizes this benchmark results.

Table 17: Overhead of the parameters size

Size of the object [bytes] Mean [ms] Factor
0 4428 1.00
32 7188 1.62
64 10837 2.44
128 20288 4.58
256 41556 9.38
512 63623 14.36

The cost of copying parameters can be rather large. The overhead seems to be amortized. Indeed, the
impact per byte is twice as small for a 512 byte parameter than for a 32 bytes. It is hard to estimate
exactly the impact of the addition of a certain number of bytes, but we can conclude that having big
objects passed by value is generally not a good idea if it is not absolutely necessary.
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The impact of virtuality on the performances has also been tested, as you can see in Table 18.

Table 18: Overhead of the virtuality

Type of call Mean [ms] Factor
Normal call 4428 1.00
Virtual call 6142 1.387

The virtuality overhead is about 39%.

Finally,the overhead of calling a function in another library has been measured. The results are shown
in Table 19.

Table 19: Overhead of library call

Type of call Mean [ms] Factor
Normal call 4428 1.00
Library call 6156 1.390

The overhead of a library call is also about 39%, so we can say that the overhead of function call and
library call is about the same.

This benchmark allowed us to have a better idea of the weight of each parameter playing a role in the
function call overhead. It turned out that the impact of the parameters was higher than we thought at
first. That helped us create a temperature heuristic more accurate. Moreover, the fact that we developed
a full benchmark for that point can help the user improving the heuristic for its system. Indeed, as
the weights of the different parameters are configurable in the heuristic, the user can run the function
benchmark and then adapt the values to the ones generated on its system.
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8 Refactorings

This section presents the refactorings that were made during the implementation in order to improve
the design or the usability of the application.

8.1 Bundled Properties

At the start of the project, we started using the properties as described in Section 3.2. This kind of
properties is named Internal Properties. For every property of the edges and the vertices, you have
to declare a new property type and chain it with the other properties of the edges, respectively, the
vertices. And when you want to read or write a property, you have to get the good property map and
then use the descriptor as a key to finally make something with the property.

But we realized that there was an easier way to manage properties. Indeed, Boost Graph Library 1.32.0
introduced a new kind of property, named the Bundled Properties. Using this system, we can specify
classes or structures representing the whole information of an edge or a vertex and access the information
directly. So, we do not use anymore the properties and property maps, we simply manipulate objects’
data. We can get the object (named bundle in BGL) using the operator [] of the graph with the
descriptor as a key. And then we can directly read and write the properties.

Using Bundled Properties instead of Internal Properties in the analyzer has allowed us to remove a lot
of cumbersome code and to make the code clearer.

The only limitation of the Bundled Properties is that they require partial class template specialization
and some compilers do not offer this feature although most of the recent compilers are smart enough to
compile that kind of code. In our case, it is plainly supported in gcc.

We can compare both property system on a simple example, an old version of the temperature function.
Listing 23 shows an implementation using Internal Properties.

Listing 23: Use of Internal Properties

double computeCallSiteTemperature(CallSite& site, Graph& g){
property_map<Graph, vertex_self_cost_t>::type selfCosts = get(vertex_self_cost, g)

;
property_map<Graph, edge_frequency_t>::type frequencies = get(edge_frequency, g);
property_map<Graph, vertex_size_t>::type functionSizes = get(vertex_size, g);
property_map<Graph, edge_temperature_t>::type temp = get(edge_temperature, g);

Function caller = source(site, g);

double cost = frequencies[site] * selfCosts[callee];

temp[site] = cost / functionSizes[callee];
}

And Listing 24 shows an implementation that uses Bundled Properties.
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Listing 24: Use of Bundled Properties

double computeCallSiteTemperature(CallSite& site, Graph& g){
Function caller = source(site, g);

double cost = g[site].frequency * g[callee].self_cost;

g[site].temperature = cost / g[callee].size;
}

It is very clear that the implementation using the Bundled Properties is much simpler than the other.

8.2 Filtering

After some time, we saw that some of the candidates were located directly in the standard library and
were often the same. For example, we had the call site from malloc to int malloc frequently reported
as a good candidate to inlining.

To avoid having this kind of result too often, we added a filtering feature to the application. The filtering
occurs at the very end, just to hide some results to the user. We did not make the filtering before this
in order to avoid losing information. There are some default filters available in the application that the
user can enable. Some functions often used like malloc and free are filtered by the these filters. The
user can also directly add new filters. A function is filtered if its name is present in the filter list and a
call site is filtered if its source or target function has to be filtered.

There is also another form of filtering that we added to the issues, the duplication filtering. In the
case of library issues, it is possible that there are several links that can make a function interesting to
be moved from a library to the other, so the user does not want to see it several times. We filter the
solution so that it is not printed several times. This specific feature is also configurable by the user.

We also added a feature to specify that we cannot move functions in some libraries, typically the system
libraries. We can move functions from these libraries into our libraries, but we cannot move functions
into them. The user can choose which functions he wants to make as protected. The functions in a
library considered protected are not directly filtered from the issues, but when an issue suggests moving
a function into one of these libraries, the application outputs a warning indicating that it is not possible
to move a function to this target library.

8.3 Usage of the analyzer as a library

During the project implementation, it was asked that the application should be used as a library and
made available to the public. So the application has been rewritten providing clear interfaces to be used
by another application. Instead of printing issues in the console, the user can now get the issues using
the functions of the library. This has been achieved by separating the concepts of searching (Analyzer)
and reporting (Reports), so that the user of the library can get the information he wants or directly use
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the reporting system to output information in the standard output. More than rewriting the interfaces,
it has been necessary to document the interfaces using Doxygen in order to give the user information
regarding which classes are responsible for what and which functions to use to achieve a specific goal.

As the library will be open source, it has been necessary to put the project source code under an open
source license. The chosen license is the GNU Lesser General Public License (LGPL)[24]. This license
is especially designed for libraries. It does not apply restrictions on the program that merely link to the
library, so the library can be used in proprietary software as long as it is not a derivate work. Applying
the LGPL license means that every file has to contain the license statement as a header. Moreover, the
application must be distributed with a full version of the license file.

8.4 Customization of the parameters

During the development of the different algorithms and temperature functions, more and more param-
eters have been added. We have decided to let the user modify them to customize the rules of the
program. This adds to the library customization possibilities.

The user of the library can now programmatically modify a set of parameters used in some algorithms.
More than the parameters of the different algorithms, we also gave the user the opportunity to change
the different values of the temperature heuristic. It is possible that the impact of the different parameters
are different from one machine to the other, from one architecture to the other and from one compiler
to another. So, the user can run the function call benchmark and then adapt the values to the one that
are relating to its system.

Of course, default values of these parameters are kept in the application, so that we can use the algorithms
without changing anything, or by only changing some of the parameters.

Aside from adding features to the user, this refactoring has other advantages:� no more magic numbers in the code� all the default values are at the same place in the code� the code is more readable without many numbers everywhere, we refer to the parameters in the
code

This is done using the Parameters class providing static utility functions to get and set the values of
the parameters. We chose to use a class with static functions to avoid having to share the instance of
the parameters between every class and to avoid the use of a singleton.

As the the analyzer can also be used directly in command line, all the parameters do have a corresponding
options to be modified from the command line. All what the tool does with the options is to parse them
and to send them to the Parameters class.
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9 Problems

This section contains the main problems encountered during this project.

9.1 Understanding the Boost Graph Library

The Boost Graph Library, like most of the Boost C++ libraries, uses a lot of template techniques in
order to be as efficient and generic as possible. Templates enable the library to use metaprogramming to
resolve as many things as possible directly at compile time. More than metaprogramming and generic
programming, BGL also makes an extensive use of traits and concepts. The traits classes are a way to
store information about compile-time entities and the concepts are a way to define requirements about
template types in a formal way.

At first, all these techniques are hard to understand and to work with for an intermediate C++ developer.
The code is hard to read because of the intensive use of templates and the compile time errors are even
more difficult. It is not rare to find a template function name that fills half of the screen in the console.
The Boost Graph Library uses compile time assertions to produce errors at compile time to detail
the error, but most of the time the information is not easy to understand and is lost in the tons of
compile-time errors about templates.

More than understanding the techniques, we also need to understand the code we write. It is not always
easy to understand exactly what can do a specific piece of code because the usage of metaprogramming
and macros are changing the code we write in something more powerful.

9.2 Creating a Boost Visitor

Several algorithms of the Boost Graph Library are based on the visitor pattern, like the depth-first or
the breadth-first searches. There are some constraints on these iterators that we must consider before
starting implementing a new one:� The visitor has to be passed to the boost::visitor() function before being passed to the algorithm.� The visitor is passed by value, so it must be copy convertible. This means that we must pay great

attention with stateful visitors.

These constraints are simple, but can cause some troubles when we are not used to them. The most
noticeable error is trying to store state inside the visitor. The visitor is copied because passed by value
and then you have only a reference to the source visitor which state will never be modified. So, when
we need to have variables inside visitors we must create them outside the visitor and give the visitor a
reference to them so that it can edit them and produce an output.
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9.3 GProf2Dot issues

GProf2Dot is the tool that converts a Callgrind profile file into a DOT file. There was a big lack in this
conversion. Indeed, neither the library information nor the filename were added to the result file. We
need this information for the analyzer. There were two solutions to solve this problem:� edit the Python script� parse the Callgrind file directly in the analyzer

After a look into the Python script, we saw that making the parsing ourselves would need a lot of time
because of the complicated Callgrind format. So, we decided to edit the Python script directly. Doing
that, we also chose to remove all the information that we do not need in the DOT file, for example the
font color and the arrow size. We added two new properties to the vertices in order to store the new
information: module and filename.

Removing the graphical information was not difficult. We have edited the DotParser class of the Python
script to not output these properties.

Then, we edited the script in order to find the information about the module of each function and to store
them in the graph. The issue was not public, but we found in the code a FIXME comment indicating
that the extraction of the module and filename was broken and disabled. We tried to reactivate this
feature, but we saw that the results were clearly broken. Each function was bound to a library, but in
most cases, not the good one. The big problem to solve this issue has been to understand the Callgrind
format, which is really complicated and uses a lot of compression. Another thing about the Callgrind
format is that, depending on the presence of the debug symbols in the executable, the call graph is not
exactly the same. It was harder to find the information about the library when the executable had been
compiled using the debug symbols. So we chose to accept the limitation that the call graph must come
from an executable without symbol tables. Then, we found a way to get the information. Depending
if the function first appears as a callee or a caller, the information about the library is not at the same
place, so we changed the script slightly to take that into account and it worked. We also had to work
with the fact that the input profile can be compressed or not, so we wrote the module search for that
it can work with both inputs.

Moreover, the Python script has another drawback. There were several informative nodes at the start of
the graph. These nodes were here only for graphical information, so we did not need them and removed
them from the digraph. If we had chosen to let these elements in the graph, we would have need to add
new properties to the nodes because these special nodes have a lot of information only here.

The next problem of the Python script was that the values of the events were always converted to
relative values in percentages. In our case, it could have been interesting to have the real values to not
risk losing some information. Once again, to avoid wasting time on a product that we will normally not
use once Gooda has been released and because the code was not easy to refactor, we did not solve this
problem.
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Finally, in some situations, the Python script was not able to parse the Callgrind file. We wanted to
try to analyze large applications like Mozilla Firefox, but when we converted the Callgrind profile file
using the Python script, it took ages to finish with a stack overflow error. Increasing the max recursion
depth limit of the Python interpreter did not solve the problem.

9.4 Dyninst

The installation of Dyninst has been difficult. The library is based on a lot of other libraries, so you
have to install them and it is not clearly defined what depends on what. First, because we needed only
a part of Dyninst, we tried to install only these subparts. But it is not easy to find the dependencies of
the sub part. So, we decided to install the whole library at once and to include the whole header files
in our simple test application.

The first problem we faced during the installation was that a specific function cplus demangle, normally
provided by libdemangle, was not found at link time when we installed everything from the binary
releases. There was no information in the documentation of Dyninst on how to install this library that
comes normally with bin-utils, but not in the case of a 64 bits system or perhaps even in the case of an
Ubuntu 64 bits.

Finally, we chose to build the library from the sources to be sure that the problem was not from the
binary release. We had to disable the test suite compilation because it was impossible to build it, but
after that, we were able to use the library.

Another problem was the lack of examples. For parseAPI, only one example was available and it was
not complete; all the include and using directives were missing, so we must find out by looking in the
reference documentation and in the sources which files we have to include and in which namespace are
the classes we use. And for the symtabAPI, there is no complete example, we have to get parts of code
in the documentation.

9.5 Virtuality

Finding a way to detect the virtuality of a function has not been as easy as we expected at first. Indeed,
there is no library to compute this information from an assembly. We started with the fact that this
information had to be in a shared library because this information is necessary at link-time for the
application to know the functions to call.

So we searched the virtual table content in the library file. For that, we made an extensive use of
the Linux utilities like readelf and objdump. There is not a lot of information available on the subject
because this is compiler and architecture dependent. We finally found this information on the ELF file.
More information about the extraction is available in the Section 3.4.1.

Using parseAPI, we can detect every call to a function. By doing that, we can determine that a function
is not virtual because there is a static link to it, but we cannot say that the other functions are virtual
or not. Indeed, this works only in a given library. In order to make this solution works well, it would
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have been necessary to parse every application library, keeping in memory every static call and then
we could say that the function that has not been found are either virtual or not used. Moreover, this
technique is not one hundred percent accurate. For example, we may have calls using function pointers
that will not be detected using this technique.

If we had not found the solution using readelf directly, another solution would have been to read the
sources directly, but this would have been a new limitation to the analyzer that the whole sources are
available to read. Furthermore, this may also have been a performance bottleneck because we would
have to parse a large number of source and header files to compute this information.

Because the computer used during this project is running in 64 bits, we made all the tests in 64 bits
shared library. But the ATLAS libraries are compiled using 32 bits, so that we have to make our
algorithm works with both formats. You can find the format of the library or executable by reading the
Class attribute of the ELF header, ELF32 indicating a 32 bits file and ELF64 a 64 bits file.

Because at first the algorithm has been tested only on some little libraries, we did not really take the
performances into account. But when testing this algorithm on an ATLAS library, it took a very long
time (>10s) to finish the search of the virtual functions. The first algorithm was made of four nested
loops. The first step to improve its performance has been to reduce the nesting of the loops. As a matter
of fact, we have reduced it to one simple loop. We can make the search a lot faster by sorting the virtual
tables by their starting address before searching for the functions. Then, we have to go through every
saved line only once and each time we are farther than the end of the current virtual table, we have to
go to the next one until we reached the last virtual table. Using this optimization, even on the ATLAS
library, the algorithm takes less than 200ms to perform the full search.

9.6 Function sizes

After choosing not to use parseAPI, we wrote the whole research directly using the content of the ELF
files.

The first version worked well in a simple case, but we quickly saw that there were several drawbacks to
this first version.

First of all, we considered a function to have a mangled name starting with ZN, but with that limitation
we lost, for example, the overloaded operators that are also considered functions. So, we chose to get
the sizes of every line appearing in the symbol table with the FUNC type.

Another problem was that in the symbol table, several names are encoded using @@ followed by several
characters, like ZNSsC1Ev@@GLIBCXX 3.4 . The problem was that in the Callgrind information, the
part from the @@ characters were not present. So, we had to identify these functions and store them
without the last information.

At the start of the implementation, we considered a function as unique given its name, but there are
several cases where a function can be defined into several libraries. We have decided to store the size
of the function for every library. With that, when verifying the size of a function we have to know the
library and the name of the function. Temporarily, we disabled this feature because the Python script
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was not able to retrieve the good libraries for each function, so that we had no result during the analysis.

9.7 Function call benchmark

To have the most realistic temperature function as possible, we developed a benchmark to weight the
different parameters playing a role in function call.

But it is not that easy to have a benchmark with realistic results. The compiler is doing a lot of
optimizations, so it is highly likely that the function we want to test will be inlined or the parameters
passed to the function will be ignored if they are not used.

To solve a part of the problem, the function declarations have been put in a header file and defined in
another source file. This way, the code invoking the function does not know the implementation and so
the call cannot be inlined.

Moreover, when benchmarking a very small part of code, like a single function call in our case, the results
can be very instable because we are benchmarking only a few CPU instructions. It is very important to
run the benchmark in the most isolated possible environment in order to avoid interruptions that can
largely change the results of the benchmark.

9.8 Multiprocess application

When we profile an application that launches other processes, we face a problem when using Callgrind.
By default, Valgrind does not profile the child processes. To fix that issue, we have to use the –trace-
children=yes option of Valgrind to check the sub processes. Even with this option, we have another
problem. Valgrind checks each process separately, so we have a Callgrind profile for each created process.

In the case of CLang, the problem was that the C++ compiler forked each file to compile to clang, so
we had only little profiles to analyze. If we want more accurate data, we have to compile bigger files.
There is no option in Callgrind to merge several profiles into one. The temporary solution we found in
the case of CLang was to use a so-called ”Unity Build”. We created a new C++ source file including
all the others source files and we compiled this source file. This is a technique used to decrease the
compilation time (in our case, the compilation time has been decreased by a factor of 2). With that, we
have a more complete profile for our compilation, but the resulting application can be different because
the compiler have a better view of the whole application.

The case of multi-threaded applications is not a problem. By default, CallGrind profiles all the threads
of an application together. You can change this behavior separating each thread into its own profile.
That can be useful in some cases, but in our case, we always wanted to profile the whole application.
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9.9 Tests on CLang

It has not been easy to implement the issues proposed by the tool. Inlining a single call site is not
always possible without modifying some code. Some functions use static variables not accessible from
the call site and then we need to change the function to inline it, possibly with a lack of performances
in the case where it is not inlined. On the contrary, sometimes we had to augment the visibility of some
fields in order to inline a call site that uses them and that new visibility can perhaps change the way
the compiler will optimize your code.

Inlining a whole function is also not always easy. Actually, sometimes the functions can be inlined, but
are not because the compiler decided it is not worth inlining them. In these cases, we have to find a
way to force the compiler to inline them. There are also functions that cannot be inlined, for example,
a recursive function. And some are difficult to inline because of complicated control flows, multiple
returns, etc.

Since we do not know the source code of CLang well, it is possible that some changes have implied other
problems and that the saving or the loss of performances are a result of these problems and not of our
changes.

Although CLang is faster and easier to build than ATLAS, it takes a long time and it is not a light
program. A full build of CLang, even with several threads, takes about fifteen minutes. Moreover, a
full CLang build takes a lot of place on the hard disk. On the computer used to make the tests, all the
versions of CLang together are using more than 8GB.

Another problem we have faced is the templates. The templates are instantiated at compile time and
then are not present in the assembly. So when we saw a call site in the call graph that comes from X,
it is possible that the call site is declared in the template, then compiled into X. So, to not inline too
many calls, we have to create another template in which we inline the incriminated call site.

Of course, the compiler is doing a lot of optimizations in order to produce efficient algorithms so that
the assembly does not always reflect the sources. The most noticeable modification is of course the
inlining. In the source, there may be a path where X calls Y and Y calls Z, but in the assembly the call
to Z has been inlined and then, there is only a call from X to Y. When we find a call site in the graph
that is not in the source, we have to follow all the paths from the source function to find a call to the
target function and this can take time regarding the function complexities.

Finally, there are sometimes several parallel call sites. If the analyzer proposes to inline a call site from
X to Y and there are several similar call sites, we have no ways to differentiate the call sites. In this
case, we chose to inline every call site from X to Y when the application proposes this.

In the case of CLang, the assertions helped a lot. There are a lot of asserts in the whole application so
that we are warned if we broke something. Of course, the asserts cannot cover every problem we could
have inserted, but it is a good security.
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9.10 Tests on ATLAS

Testing the analyzer on ATLAS has not been a easy task. To avoid wasting time on installing everything,
the tests have been made on a remote computer located at CERN, in Switzerland. This situation led
to some problems because this computer does not have the same configuration as the machine used to
develop the application.

The first problem we had is that the libelf library installed on the computer was not exactly the same
and one specific function was missing, being replaced by another. Where the normal function followed
the common convention of returning zero on success and another number on problem, the new function
returned one on success and zero if there was an error. So we had to use preprocessor instructions in
order to use the good version for each libelf implementation. So the program has to be compiled with
flags to compile and works well on the machine.

Another problem was that the provided call graph was an old one and that some libraries have been
moved from this time, so that we had to edit the call graph in order to find the good libraries.

Also, since the call graph predated the project, it was not following the limitations we had emitted about
the Python script and on the application. First, the graph was compressed and the edited Python was
no longer supporting the compression. We had to correct the script to support the compression. Then,
the call graph contained demangled names and that was not supported by the application. We had
to make several changes to support the demangled names, especially demangling the names from the
shared objects to bind them to the ones from the call graph.
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10 Tools

To develop this application, we have used only a few tools. Indeed, in the C++ world on Linux, there
is no outstanding editor and most of the developers are using command-line tools and basic text editors
to develop C/C++ applications. In our case, we used Vim as the editor to develop the library.

At the beginning of the project, we used make to build the project. But we switched to CMake[25] after
some weeks. CMake is not really a build automation tool, it is a generator for other tools. In our case,
we use it as a makefiles generator. So, we have to launch CMake to create the makefiles and then make
to build the project. The advantage is that the CMake configuration file is easier and more expressive
than a makefile. Moreover, CMake manages the dependencies between the files, so that the generated
makefile is very complete. Finally, it is also an advantage when we want to port an application on other
platforms because CMake can also generate Microsoft Visual C++ project files, so you can build it on
Windows as well.

Another tool that has been really useful during this project is c++filt. This little tool demangles all the
C++ mangled names directly passed to it or on the standard input. It has been useful when working
on the tests, in order to easily find where a function was in the source code without losing time working
with the mangled name.

We used Doxygen[26] to document the source code of the application. Doxygen is one of the most used
documentation tool for C/C++ projects in the Linux world. It enables us to describe every part of
the public interface and then to generate complete HTML documentation of the project. You can also
generate documentation in other formats like RTF, LATEX or Unix man pages.

Although there is no outstanding editor, there are a lot of command-line tools that can really help a
C++ developer to produce robust applications. In this project, we have used several of these command-
line tools. We used cppcheck[27] as a static analyzer. This open source application checks your code
to find allocations errors, variable issues, members that can be const and other defects. We also used
cpplint[28] that is a simple Python script checking your code base in order to validate the code style
according to the Google C++ Style Guide. More than testing the code for the style, it can also point
you to some programming mistakes. And last but not least, in order to have a clean code and with the
same style everywhere, we used AStyle[29]. This tool formats your entire code according to rules you
can give to it. The use of all these tools enabled us to solve some problems, to remove some unused
variables and to have a cleaner code base.

More than being helpful to generate the call graph, we also used Valgrind to check for memory prob-
lems in the application. We have corrected some memory leaks in the application and some problems
about uninitialized values. Furthermore, we used Callgrind to profile the analyzer to find performance
bottlenecks when working on the ATLAS call graph.
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11 Conclusion

During the benchmarks, the analyzer has shown that it can produce some good results. Inlining only few
call sites or functions has quickly given us some savings greater than 1% when testing our application
on the CLang Compiler. The tool can to be used when the other optimizations have been made, but it
can also shows to the developer where the hot regions of the code are located. For the ATLAS software,
saving 1% of the run-time saves about 100K$ per year for the experiment.

A goal of the project was to understand if it was worth to consider the clusters of hot call sites when
choosing inlining candidates. Our results demonstrated that it has advantages to inline a cluster of the
same temperature as a single call site. Nevertheless, if we compare the number of call sites to inline,
it is better to inline single call site considering that it is less work to inline it by hand. It would be
interesting to test the effects when doing profile-guided optimization in a compiler.

At the beginning of the project I thought that the longest part of the project would be to work on the
temperature heuristics and to test the application, but the information extraction phase has taken a lot
of time. Indeed, I assumed that the available tools would give us everything we needed. I turned out
that it will be up to the analyzer to directly extract the information about the functions. For that, I
had to study the ELF format of the shared libraries and executable files and then extract the data from
the analyzer.

Furthermore, we thought that the most interesting report that the application could produce would be
a list of functions and call sites to inline. It turned out that with the available information we have been
able to detect other issues. The analyzer is able to detect issues between the libraries or hierarchies of
virtual functions that could be improved.

Testing the code has also been harder than I thought. We are not working at a compiler level, so
the issues provided by the analyzer have to be resolved by hand. When a developer analyzes its own
program it is easier because he knows its code, but when we have to edit another program, it becomes
more difficult. Moreover, this can lead to errors. We can optimize more than we wanted or, on the
contrary, introduce a new performance issue.

I hope that this project will go further and that it will help the ATLAS Software team to improve the
performance of their applications.

11.1 Future work

Because the Gooda tool has not been ready before the end of the project, the analyzer has not been
tested on its generated call graphs. Once Gooda will be finalized, it will be necessary to test the analyzer
on its output to see if the two call graphs are compatible. Moreover, it is possible that the Gooda call
graph contains more information than Callgrind and that the analyzer can take advantage of them.
It is even possible that some information from the generated spreadsheets can be extracted. If the
use of Gooda call graphs is successful, it will allow the removal of the dependency to the slow and
not-well-working Python script and the slow Callgrind profiler.
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Until Gooda is finished it could be interesting to support others profilers. The Python script is not only
made for Callgrind: it supports several other profilers. Not all of them would be interesting because for
some of them information is missing. For example, we tried gprof, The GNU Profiler, and it did not get
the information about the shared objects containing the functions. Moreover, when the Python script
on a gprof profile do not have the same output as with a Callgrind profile so supporting new profilers
would mean doing more modifications to the Python script in order to be supported by the analyzer.

A good way to improve the analyzer would be to get the parameters size for each function when the
parameters are passed by value. This would improve the computation of the cost of a function call
and by the way the function and call site temperatures. This could certainly be achieved by looking
to the ELF files and get the sizes of each type. For the built-in types, it would be necessary to get a
map indicating what is built-in and the size of each type. The size of a standard type can depend on
the compiler and on the platform. As a little improvement to the function cost model, we could also
consider the function return type. Non-void functions are generally more costly than void functions.
Considering the return type would then be good in that a copy of the return value can also occur and
add cost to the function call. This information is not available from the mangled name so we will have
to parse the sources or the assembly to discover the return type of a function.

Analyzing the source code or the assembly code can give us a lot of information that can be used when
computing the heuristics. Section 2.4 detailed every parameter that plays a role when we inline a call
site, but we did not take into account most of them like the optimization savings, the register pressure
or the Instruction-Cache misses. Although it is not trivial, some papers have shown that they can be
considered. For example, the Instruction Cache misses can be modeled[30] in order to avoid them when
choosing candidates to inline. Others have shown that some predictions can be made about the effects
of optimizations on a function[31]. Moreover, as perf records the events about cache misses, we can
imagine to get the information directly from the Gooda call graph.

Another interesting improvement could be to remove the false positives in the virtual call search, as
explained in Section 3.4.1. If we have more information about the call sites using the perf tools and
Gooda, it would be possible to have the position of the call sites in the functions and then from there
detect how the calls have been made. As Gooda also manages source views of the functions, it would
certainly be possible to achieve this goal without too much work.

If the analyzer had to be used on projects bigger than ATLAS, the performances of the tool can become
a problem. A good track would be to parallelize part of the application. On the ATLAS call graph
there are two operations that take a long time, the reading of the graph and then the parsing of the
information and libraries. The first point will not be easy to parallelize because it reads a single file
and creates a single graph. The second point is much more interesting. The parsing of a library does
not depend on other data. So, we can imagine to parse the libraries in parallel in several processes
depending on the number of available processors. Once all the threads are completed, we can then get
the information for each function. For the algorithms iterating through the vertices or the edges, we
can also imagine splitting the iterations through several process each having only a part of the graph to
manage. But the simple operations iterating through the graph are not very expensive and so they are
not the best candidates to optimize. Of course, that would mean to ensure thread safety on the part
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of the code that would be accessed by multiple threads. Ensuring thread safety is a complicated and
time-consuming work.

During this project, we did not have time to test the analyzer extensively. We only tested the analyzer
extensively on CLang. Even if CLang is a good subject when talking about large scale object-oriented
applications, it would have been interesting to make more tests on other applications of the same type
and also on applications of other types. It would also have been interesting to test several heuristic
versions to see what we can do to improve it. We tested the tool on ATLAS, but we did not implement
the solutions proposed by the analyzer in the ATLAS source code. As the analyzer has been designed
for this kind of application, it would be a good test to verify its results on ATLAS performances.

So far, the output and the configuration of the analyzer is quite basic. All the information is printed into
the standard output and if the profiled application is large, there are thousands of line printed to the
console. A good way to improve that would be to let the user choose exactly which statistic report he
wants to print and which issues he wants to be warned of. Another good improvement at this level would
be to produce reports in other forms. The most practical would be to generate an HTML page, or even
website, containing all the information about the profiled application. The development team could so
have access to the information without launching the analysis on their own computers. Finally, it would
be interesting to improve the filters of the results to allow the use of regular expressions. At that point,
the filters are only checked with equality. For example, if we want to filter all the malloc functions, we
have to put filters for malloc, int malloc, aligned malloc, . . . . Allowing regular expressions can give
the user a new level of flexibility, letting him filtering all the functions of a given class for example.

11.2 What I learned

During this project I have learned a lot of things. This was my first important project in C++, so I
took the chance to learn this language as much a possible by reading books and papers and applying
my new knowledge on the project. I also had the opportunity to study the planned new C++ standard,
C++Ox that will add a lot of new features to the core languages and to the standard library. More than
just study some of the features, I tested some of them, like the very efficient hash tables (unordered set
and unordered map) or the little, but very practical change of the new right angle bracket facility.

Of course, this was also a perfect opportunity to learn the tool chain to build C++ projects. I now know
how to build a C++ project correctly, how to use shared libraries, how to create new libraries and how
to build external libraries. When using C++ libraries, the best way is often to build the whole library
from scratch. This may take some time and, moreover, we have to learn how to interpret the problems
that may happen during these installations and fix them.

Before the beginning of the project, I was not used to the tool chain associated with C++. I think I
now have a better understanding of these tools especially gcc, make and CMake. Furthermore, I have
learned to develop without using a big Integrated Development Environment as I was familiar to when
programming in Java with IntelliJ Idea. During this project, I have used mostly command-line tools like
Vim to work on this project. This makes a huge difference, but after some time working with these tools,
we have about the same productivity as when using an advanced editor. Working with the command
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line tools improved also my knowledge of shell, especially bash.

This project has also introduced me to several libraries: Dyninst parseAPI and symtabAPI and especially
the Boost Graph Library. It was an opportunity to study the Boost libraries set. These libraries are
using a lot of advanced C++ features, so I had to understand these techniques in order to use the library
in the best way. I think I have now better knowledge in capabilities like templates, generic programming
and metaprogramming. I also have experienced working with libelf that is not an easy library to starts
with.

Finally, I have acquired many new skills in the domain of inlining and of performances in general. I think
I have good knowledge about how a function is invoked in C++ when using GCC and what factors can
influence the cost of this invocation. I also have new expertise in how GCC is managing the functions
and how its inlining optimizations are working. I can now understand how are compiled the executable
files and shared libraries in ELF format.
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12 Appendices

12.1 Appendix A: Content of the CD-Rom

In appendices of this document, you will find a CD with this content:� This document in PDF format: report.pdf� The document of requirements in PDF format: requirements.pdf� The logbook in PDF format: logbook.pdf� The user documentation in PDF format: user doc.pdf� minutes : The minutes of the project, in PDF format� week-reports : The week reports, in PDF format� sources : The LATEX sources of every document

– report : The LATEX sources of this document

– logbook : The LATEX sources of the logbook

– user doc: The LATEX sources of the user documentation

– requirements : The LATEX sources of the document of requirements

– minutes : The LATEX sources of all the minutes of the project

– week-reports : The LATEX sources of all the week reports of the project� analyzer : The C++ sources of the application, the configuration files and the included tools

– src: The C++ source files

– include: The C++ header files

– tools : The Python script to convert Callgrind profile into a DOT file
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12.2 Appendix B: CLang analysis

Table 20 shows the hottest functions.

Table 20: Top 10 function by temperature

Function Temperature
ZNK5clang8QualType12getCommonPtrEv 0.0750
ZNK5clang13SourceManager12getSLocEntryEjPb 0.0714
ZN4llvm21llvm is multithreadedEv 0.0284
ZNK5clang5Token17getIdentifierInfoEv 0.0264
ZN5clang4Decl19castFromDeclContextEPKNS 11DeclContextE 0.0147
ZN5clang8QualTypeC1EPKNS 4TypeEj 0.0144
ZN5clang11DeclContext17getPrimaryContextEv 0.01206
ZN4llvm16FoldingSetNodeID10AddPointerEPKv 0.01125
ZNK5clang10TokenLexer25getMacroExpansionLocationENS 14SourceLocationE 0.0108
ZNK5clang5Lexer17getSourceLocationEPKcj 0.0094

Then, Table 21 summarizes the first call sites.

Table 21: Top 10 call sites by temperature

Call site Temperature
ZNK5clang13SourceManager13getFileIDSlowEj
→ ZNK5clang13SourceManager12getSLocEntryEjPb

0.0594

ZN5clang10TokenLexer3LexERNS 5TokenE’2 → ZNK5clang5Token17getIdentifierInfoEv 0.0235
ZNK4llvm12PassRegistry11getPassInfoEPKv→ ZN4llvm21llvm is multithreadedEv 0.0141
ZNK5clang10TokenLexer25getMacroExpansionLocationENS 14SourceLocationE
→ ZNK5clang13SourceManager12getSLocEntryEjPb

0.0111

ZN5clang4Decl22getTranslationUnitDeclEv
→ ZN5clang4Decl19castFromDeclContextEPKNS 11DeclContextE

0.0072

ZN5clang10TokenLexer3LexERNS 5TokenE’2
→ ZNK5clang10TokenLexer25getMacroExpansionLocationENS 14SourceLocationE

0.0067

ZN5clang13SourceManager30createMacroArgInstantiationLocENS 14SourceLocationES1 j
→ ZN5clang13SourceManager26createInstantiationLocImplERKNS 6SrcMgr17InstantiationInfoEjjj

0.0062

ZN5clang7CanQualINS 4TypeEE12CreateUnsafeENS 8QualTypeE
→ ZN5clang8QualTypeC1EPKNS 4TypeEj

0.0061

ZN4llvm16BumpPtrAllocator8AllocateEmm→ ZN4llvm16BumpPtrAllocator8AlignPtrEPcm 0.0060
ZN12 GLOBAL N 120TemplateInstantiator29TransformTemplateTypeParmTypeERN5clang14Type
LocBuilderENS1 23TemplateTypeParmTypeLocE→ ZNK5clang8QualType12getCommonPtrEv

0.0050
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The first cluster has a temperature of 0.1232 and is composed of the ten given call sites:� ZN5clang13SourceManager22createInstantiationLocENS 14SourceLocationES1 S1 jjj
→ ZN5clang13SourceManager26createInstantiationLocImplERKNS 6SrcMgr17InstantiationInfoEjjj� ZN5clang12Preprocessor29HandleMacroExpandedIdentifierERNS 5TokenEPNS 9MacroInfoE’2
→ ZN5clang12Preprocessor19isNextPPTokenLParenEv� ZN5clang12Preprocessor19isNextPPTokenLParenEv→ ZNK5clang10TokenLexer17isNextTokenLParenEv� ZN5clang10TokenLexer23ExpandFunctionArgumentsEv’2
→ ZN5clang13SourceManager30createMacroArgInstantiationLocENS 14SourceLocationES1 j� ZN5clang12Preprocessor16HandleIdentifierERNS 5TokenE’2
→ ZNK5clang12Preprocessor15getInfoForMacroEPNS 14IdentifierInfoE� ZN5clang13SourceManager30createMacroArgInstantiationLocENS 14SourceLocationES1 j
→ ZN5clang13SourceManager26createInstantiationLocImplERKNS 6SrcMgr17InstantiationInfoEjjj� ZN5clang10TokenLexer3LexERNS 5TokenE’2
→ ZNK5clang10TokenLexer25getMacroExpansionLocationENS 14SourceLocationE� ZNK5clang10TokenLexer25getMacroExpansionLocationENS 14SourceLocationE
→ ZNK5clang13SourceManager12getSLocEntryEjPb� ZN5clang10TokenLexer3LexERNS 5TokenE’2 → ZNK5clang5Token17getIdentifierInfoEv� ZNK5clang13SourceManager13getFileIDSlowEj→ ZNK5clang13SourceManager12getSLocEntryEjPb

And the second cluster has a temperature of 0.0439 and contains the eight following call sites:� ZN4llvm12LeakDetector20addGarbageObjectImplEPv→ ZN4llvm21llvm is multithreadedEv� ZN4llvm12LeakDetector23removeGarbageObjectImplEPv→ ZN4llvm21llvm is multithreadedEv� ZNK4llvm12PassRegistry11getPassInfoEPKv→ ZN4llvm21llvm is multithreadedEv� ZNK4llvm12PassRegistry11getPassInfoEPKv→ ZNK4llvm12PassRegistry7getImplEv� ZN4llvm17PMTopLevelManager16findAnalysisPassEPKv→ ZNK4llvm12PassRegistry11getPassInfoEPKv� ZN4llvm17PMTopLevelManager16findAnalysisPassEPKv→ ZNK4llvm4Pass9getPassIDEv� ZN4llvm17PMTopLevelManager16findAnalysisPassEPKv→ ZN4llvm12PassRegistry15getPassRegistryEv� ZN4llvm12PassRegistry15getPassRegistryEv→ ZN4llvm21llvm is multithreadedEv
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Glossary

breadth-first search graph search algorithm that explores first all the neighbors nodes before considering the children
nodes. 51

call graph Graph containing all the function calls made during an execution of a program. 6

depth-first search graph search algorithm that explores as far as possible along each branch before backtracking to
consider the neighbors. 51

DOT plain-text graph description language. It is the most used format to store graph. . 7, 9

embedded systems a computer system designed to do one specific function embedded in a complete device. 17

header only a library in which all macros, functions and classes are defined in header files. This kind of library do not
need to be compiled apart. 22

heuristic technique designed to solve a problem that ignores whether the solution can be proven to be correct. 7

Instruction Cache cache for the instructions, generally put in the L1 cache of the processor, a very fast hardware cache
directly on the processor. 17

JSon JavaScript Object Notation, a lightweight computer data interchange format. 7

NDA Non-disclosure agreement, legal contract between two or more parts that outlines confidential material. 11

NP-Complete Nondeterministic polynomial time complete. Solutions to this kind of problem can be verified. 7

pipelining in modern CPUs, instructions are executed in several stages and each of these stages is made by a specific
component and then passed to the next one, so the CPU executes several instructions at the same, one per pipelining
stage. 17

Tesla unit of magnetic field. 6

TeV Tera electron volt, unit of energy. 6

variadic function a function taking a variable number of parameters. 13, 18

visitor a design pattern allowing the user to execute operations at specific steps of an algorithm. 63
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